a: \(A=\left(a+b+c\right)^2+\left(a-b+c\right)^2+\left(a+b-c\right)^2+\left(b+c-a\right)^2\)
\(=2\left(a+c\right)^2+2b^2+\left(a+b-c\right)^2+\left(a-b-c\right)^2\)
\(=2\left(a+c\right)^2+2b^2+2\left(a-c\right)^2+2b^2\)
\(=2\left(a^2+2ac+c^2+a^2-2ac+c^2\right)+4b^2\)
\(=2\left(2a^2+2c^2\right)+4b^2\)
\(=4a^2+4b^2+4c^2\)
b: \(\left(a+b+c\right)^2+\left(a+b-c\right)^2-2\left(a+b\right)^2\)
\(=2\left(a+b\right)^2+2c^2-2\left(a+b\right)^2\)
\(=2c^2\)