Bài 1 :
a, Ta có : \(\left(x+3\right)^3=x\left(x-4\right)\)
=> \(x^3+9x^2+27x+27=x^2-4x\)
=> \(x^3+9x^2+27x+27-x^2+4x=0\)
=> \(x^3+8x^2+31x+27=0\)
=> \(x\approx-1,27\)
Vậy phương trình có tập nghiệm là \(S=\left\{~-1.27\right\}\)
b, Ta có : \(\frac{4}{3}x-\frac{5}{6}=\frac{1}{2}\)
=> \(\frac{4}{3}x=\frac{1}{2}+\frac{5}{6}=\frac{4}{3}\)
=> \(x=1\)
Vậy phương trình có tập nghiệm là \(S=\left\{1\right\}\)
c, Ta có : \(\frac{x-3}{5}=6-\frac{1-2x}{3}\)
=> \(\frac{6\left(x-3\right)}{30}=\frac{180}{30}-\frac{10\left(1-2x\right)}{30}\)
=> \(6\left(x-3\right)=180-10\left(1-2x\right)\)
=> \(6x-18=180-10+20x\)
=> \(-14x=188\)
=> \(x=-\frac{94}{7}\)
Vậy phương trình có tập nghiệm là \(S=\left\{-\frac{94}{7}\right\}\)
Bài 2 :
a, Ta có : \(x^2+4x-2xy-4y+y^2\)
= \(\left(x-y\right)^2+4\left(x-y\right)\)
= \(\left(x-y\right)\left(x-y+4\right)\)
b, Ta có : \(x\left(x-4\right)+\left(x-4\right)\left(2x+3\right)\)
\(=\left(x-4\right)\left(x+2x+3\right)\)
= \(=\left(x-4\right)\left(3x+3\right)\)
c, Ta có : \(x^2-2x+1-y^2\)
\(=\left(x-1\right)^2-y^2\)
= \(\left(x-1-y\right)\left(x-1+y\right)\)