Tham khảo
\(1,\) Giả sử mạch \(1 \) là mạch mã gốc.
- Thì ta có : \(A=A_1+A_2=A_1+T_1=mU+mA\)
\(\rightarrow A=mU+mA=900\left(nu\right)\)
\(-Gen\) đứt \(3600\) liên kết \(hidro\) \(\rightarrow H=3600\left(lk\right)\)
\(\rightarrow\left\{{}\begin{matrix}2A+3G=3600\\G=600\end{matrix}\right.\rightarrow\left\{{}\begin{matrix}A=T=900\left(nu\right)\\G=X=600\left(nu\right)\end{matrix}\right.\)
\(\rightarrow N=2A+2G=3000\left(nu\right)\)
\(L=3,4.\dfrac{3000}{2}=5100\left(\overset{O}{A}\right)\)
\(2,\)Ta có \(0< G_1< 600\) \(,G_1\in N\)
- Gọi \(k1\) là số lần phiên mã lúc đầu (\(k1\le5,k1\in N\))
- Ta có số \(rNu\) loại \(G\) môi trường cung cấp cho \(gen\) phiên mã \(k1\) lần được tính theo công thức
\(mG_{mt}=k1.X_1=465\)
\(\rightarrow\left\{{}\begin{matrix}k1=1\rightarrow X_1=465\left(nu\right)\\k1=2\rightarrow X_1=232,5\left(nu\right)\left(\text{loại}\right)\\k1=3\rightarrow X_1=155\left(nu\right)\end{matrix}\right.\)
\(\rightarrow\left\{{}\begin{matrix}k1=4\rightarrow X_1=116,25\left(nu\right)\left(\text{loại}\right)\\k1=5\rightarrow X_1=93\left(nu\right)\end{matrix}\right.\)
- Có tới ba giá trị \(X_1\) nên ta phải loại trừ hai giá trị ko hợp lý. Gọi số lần phiên mã lúc sau là \(k2\left(k2\in N\right)\)
- Tương tự ta cũng có :
\(mG_{mt}=k2.X_1=775\)
\(\rightarrow\left\{{}\begin{matrix}X_1=456\left(nu\right)\rightarrow k2=1,67\left(\text{loại}\right)\\X_1=155\left(nu\right)\rightarrow k2=5\left(tm\right)\\X_1=93\left(nu\right)\rightarrow k2=8,3\left(\text{loại}\right)\end{matrix}\right.\)
\(\rightarrow X_1=155\left(nu\right)\Rightarrow k1=3,k2=5\)
Lại có : \(G_1=600-155=455\left(nu\right)\)
\(\rightarrow\left\{{}\begin{matrix}U_m=375\left(nu\right)\\A_m=525\left(nu\right)\\X_m=445\left(nu\right)\\G_m=155\left(nu\right)\end{matrix}\right.\)