ta có : \(M=2+2^2+2^3+2^4+...+2^{120}\)
\(\Leftrightarrow M=\left(2+2^2+...+2^{12}\right)+\left(2^{13}+2^{14}+...+2^{24}\right)+...+\left(2^{109}+2^{110}+...+2^{120}\right)\)
\(\Leftrightarrow M=2\left(1+2+...+2^{11}\right)+2^{13}\left(1+2+...+2^{11}\right)+...+2^{109}\left(1+2+...+2^{11}\right)\)
\(\Leftrightarrow M=\left(2+2^{13}+...+2^{109}\right)\left(1+2+...+2^{11}\right)\)
\(\Leftrightarrow M=4095\left(2+2^{13}+...+2^{109}\right)=105.39\left(2+2^{13}+...+2^{109}\right)⋮105\left(đpcm\right)\)