1. Cho hai dãy số \(\left(x_n\right)=\frac{\left(n+1\right)!}{2^n}\) và \(\left(y_n\right)=n+sin^2\left(n+1\right)\) dãy số (xn) và y(n) là dãy số tăng hay giảm?
2. Cho dãy số (un) được xác định bởi \(u_1=3\)và \(u_{n+1}\) = \(\frac{u_n}{4}\), ∀n ≥1. Tìm số hạng tổng quát của dãy số
3. Cho dãy số \(\left(u_n\right)=\frac{3n-1}{3n+7}\) . Dãy số \(\left(u_n\right)\) bị chặn dưới, chặn trên hay không bị chặn trên hoặc chặn dưới
1/ Dễ thấy \(\left(x_n\right)\) là dãy dương
\(\frac{x_{n+1}}{x_n}=\frac{\left(n+2\right)!}{2^{n+1}}.\frac{2^n}{\left(n+1\right)!}=\frac{n+2}{2}=1+\frac{n}{2}>1\)
\(\Rightarrow x_{n+1}>x_n\Rightarrow x_n\) là dãy tăng
Ta có \(0< sin^2\left(n+1\right)< 1\) \(\forall n\in N\) \(\Rightarrow1-sin^2\left(n+1\right)>0\)
\(y_{n+1}-y_n=n+1+sin^2\left(n+2\right)-\left(n+sin^2\left(n+1\right)\right)\)
\(=1-sin^2\left(n+1\right)+sin^2\left(n+2\right)>sin^2\left(n+2\right)>0\)
\(\Rightarrow y_{n+1}>y_n\Rightarrow y_n\) là dãy tăng
2/ \(\left\{{}\begin{matrix}u_1=3\\u_{n+1}=\frac{1}{4}u_n\end{matrix}\right.\) \(\Rightarrow u_n\) là cấp số nhân với công bội \(q=\frac{1}{4}\)
\(\Rightarrow u_n=u_1.q^{n-1}=\frac{3}{4^{n-1}}\)
3/ Không thấy cho n trong khoảng nào, chắc là \(n\ge0\)?
\(u_n=\frac{3n+7-6}{3n+7}=1-\frac{6}{3n+7}< 1\)
\(u_n+\frac{1}{7}=\frac{3n-1}{3n+7}+\frac{1}{7}=\frac{24n}{7\left(3n+7\right)}\ge0\Rightarrow u_n\ge-\frac{1}{7}\)
\(\Rightarrow-\frac{1}{7}\le u_n< 1\Rightarrow u_n\) là dãy bị chặn (bị chặn cả trên lẫn dưới)