Bài 5: Ôn tập chương Dãy số. Cấp số cộng và cấp số nhân.

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
adfghjkl

1. Cho hai dãy số \(\left(x_n\right)=\frac{\left(n+1\right)!}{2^n}\)\(\left(y_n\right)=n+sin^2\left(n+1\right)\) dãy số (xn) và y(n) là dãy số tăng hay giảm?

2. Cho dãy số (un) được xác định bởi \(u_1=3\)\(u_{n+1}\) = \(\frac{u_n}{4}\), ∀n ≥1. Tìm số hạng tổng quát của dãy số

3. Cho dãy số \(\left(u_n\right)=\frac{3n-1}{3n+7}\) . Dãy số \(\left(u_n\right)\) bị chặn dưới, chặn trên hay không bị chặn trên hoặc chặn dưới

Nguyễn Việt Lâm
26 tháng 11 2019 lúc 22:18

1/ Dễ thấy \(\left(x_n\right)\) là dãy dương

\(\frac{x_{n+1}}{x_n}=\frac{\left(n+2\right)!}{2^{n+1}}.\frac{2^n}{\left(n+1\right)!}=\frac{n+2}{2}=1+\frac{n}{2}>1\)

\(\Rightarrow x_{n+1}>x_n\Rightarrow x_n\) là dãy tăng

Ta có \(0< sin^2\left(n+1\right)< 1\) \(\forall n\in N\) \(\Rightarrow1-sin^2\left(n+1\right)>0\)

\(y_{n+1}-y_n=n+1+sin^2\left(n+2\right)-\left(n+sin^2\left(n+1\right)\right)\)

\(=1-sin^2\left(n+1\right)+sin^2\left(n+2\right)>sin^2\left(n+2\right)>0\)

\(\Rightarrow y_{n+1}>y_n\Rightarrow y_n\) là dãy tăng

2/ \(\left\{{}\begin{matrix}u_1=3\\u_{n+1}=\frac{1}{4}u_n\end{matrix}\right.\) \(\Rightarrow u_n\) là cấp số nhân với công bội \(q=\frac{1}{4}\)

\(\Rightarrow u_n=u_1.q^{n-1}=\frac{3}{4^{n-1}}\)

3/ Không thấy cho n trong khoảng nào, chắc là \(n\ge0\)?

\(u_n=\frac{3n+7-6}{3n+7}=1-\frac{6}{3n+7}< 1\)

\(u_n+\frac{1}{7}=\frac{3n-1}{3n+7}+\frac{1}{7}=\frac{24n}{7\left(3n+7\right)}\ge0\Rightarrow u_n\ge-\frac{1}{7}\)

\(\Rightarrow-\frac{1}{7}\le u_n< 1\Rightarrow u_n\) là dãy bị chặn (bị chặn cả trên lẫn dưới)

Khách vãng lai đã xóa

Các câu hỏi tương tự
xin gam
Xem chi tiết
Dilly_09
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Kuramajiva
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
10D4_Nguyễn Thị Nhật Lin...
Xem chi tiết
Thanh Thúy Trần
Xem chi tiết