Cho nửa (O), đường kính AB và dây EF.
a) Chứng minh: tứ giác AIKB là hình thang vuông
b) Kẻ OM⊥IK tại M. Chứng minh: MI=MK và ME=MF.
c) So sánh IE và EK
Cho nửa (O), đường kính AB và dây EF.
a) Chứng minh: tứ giác AIKB là hình thang vuông
b) Kẻ OM⊥IK tại M. Chứng minh: MI=MK và ME=MF.
c) So sánh IE và EK
a) Cho nửa đường tròn tâm O, đường kính AB, dây CD. Các đường vuông góc với CD tại C và D tương ứng cắt AB ở M và N. Chứng minh rằng AM = BN
b) Cho nửa đường tròn tâm O, đường kính AB. Trên AB lấy các điểm M, N sao cho AM = BN. Qua M và qua N kẻ các đường thẳng song song với nhau, chúng cắt nửa đường tròn lần lượt ở C và D. Chứng minh rằng MC và ND vuông góc với CD
cho nửa đg tròn tâm O có đg kính AB=2R.Trên tia tới của tia AB lấy điểm M bất kỳ từ M. Vẽ đg thẳng ko đi qua O,đg thẳng này cắt nửa đg tròn O tại C và D(C nằm giữa M và D).Gọi I là giao điểm của AD và BC vẽ IE vuông góc vs AB
a)CM:ΔMAD đồng dạng ΔMCB.Từ đó suy ra MA.MD=MC.MD
b)CM:tg BDIE nt
c)CM:DI là tia phân giác của góc CDE
cho hai đường tròn (O;r) và (O;R) với R>r.Hai dây AB,CD thuộc đường tròn (O;r) sao cho AB>CD. Đường thẳng AB cắt (O;R) tại M và N, đường thẳng CD cắt(O,R) tại H và K.Kẻ OI vuông góc với AB (I thuộc AB),OJ vuông góc với CD(J thuộc CD). So sánh các độ dài:
a) OI và OJ b) MN và HK
Cho đường tròn (O) đường kính AB, dây CD không cắt đường kính AB. Gọi H và K theo thứ tự là chân các đường vuông góc kẻ từ A và B đến CD. Chứng minh rằng CH=DK
Gợi ý: Kẻ OM vuông góc vớiCD.
giải giúp mình với.
Cho nửa đường tròn tâm O, đường kính AB và dây EF không cắt đường kính. Gọi I và K lần lượt là chân các đường vuông góc kẻ từ A và B đến EF. Chứng minh rằng IE = KF ?
b) Đường thẳng OP là tiếp tuyến của đường tròn ngoại tiếp tam giác MNP. Cho nửa đường tròn (O) đường kính AB và một điểm P trên nửa đường tròn. Gọi Q là một điểm trên đường kính AB. Qua Q kẻ đường vuông góc với AB cắt BP tại M, cắt AP tại N. Tiếp tuyến của nửa đường tròn ở P cắt MN ở I. Chứng minh: a) Tứ giác QNPB và AQPM là các tứ giác nội tiếp
Cho đường tròn tâm O, đường kính AB. Dây CD cắt đường kính AB tại I. Gọi H và K theo thứ tự là chân các đường vuông góc kẻ từ A và B đến CD. Chứng minh: CH=DK
(vẽ hình giúp mình luôn nha)