Cho đường tròn (O) có đường kính AB và điểm C thuộc đường tròn đó (C khác A , B ). Lấy điểm D thuộc dây BC (D khác B, C). Tia AD cắt cung nhỏ BC tại điểm E, tia AC cắt tia BE tại điểm F.
a. Chứng minh rằng FCDE là tứ giác nội tiếp đường tròn.
b. Chứng minh rằng DA.DE = DB.DC.
Cho đường tròn tâm O có đường kính AB và C là một điểm thuộc đường tròn tâm O (C khác A,B). Lấy điểm D thuộc dây cung BC (D khác B, C). Tia AD cắt cung nhỏ BC tại điểm E, tia AC cắt tia BE tại điểm F. Chứng minh:
a) Tứ giác FCDE nội tiếp
b) Chứng minh DA.DE = DB.DC
cho tam giác ABC nội tiếp đường tròn tâm (o), đường kính AB=2R trên cạnh BC lấy điểm M ( M khác B và C) đường thẳng AM cắt đường tròn O tại D, đường thẳng BD cắt AC tại E đường tròn tâm I ngoại tiếp tam giác MDB cắt đường kính ad tại điểm thứ hai là N
1) chứng minh tứ giác CEDM nội tiếp đường tròn và 3 điểm E,M,N thẳng hàng
2)cho đoạn thẳng CN cắt đường tròn(i) ở F .cmr : DF//AE
Cho đường tròn (O; R) và dây MN không đi qua tâm O. Kẻ đường kính AB vuông góc với MN tại E. Lấy điểm C thuộc dây MN. BC cắt đường tròn (O;R) tại K. a) Chứng minh: Tứ giác AKCE nội tiếp b) Gọi I là giao điểm của AK và MN, D là giao điểm của AC và BI. Chứng minh C cách đều 3 cạnh của tam giác DEK
Cho tứ giác ABCD có 2 đỉnh B và C trên nửa đường tròn đường kính AD, tâm O. Hai đường chéo AC và BD cắt tại E. Gọi H là hình chiếu vuông góc từ E kẻ xuống AD và I là trung điểm DE. Cmr:
a) ABEH và DCEH nội tiếp
b) E là tâm đường tròn nội tiếp tam giác BCH
c) 5 điểm B,C,I,O,H thuộc đường tròn
Cho tam giác ABC vuông tại A, AB < AC. LẤy điểm I thuộc cạnh AC sao cho góc ABI bằng góc ACB. Đường tròn (O) đường kính IC cắt BI tại D và cắt BC Tại M. Chứng mình rằng
a) Tứ giác ABCD nội tếp
b) CI là tia phân giác của góc DCM
c) DA là tiếp tuyến của đường tròn (O)
Cho tam giác ABC có ba góc nhọn, nội tiếp đường tròn tâm O. Hai đường cao AD, BE cắt nhau tại H (D∈BC, E∈AC).
a) Tứ giác ABDE nội tiếp
b) Tia AO cắt đường tròn (O) tại K (K khác A). CM tứ giác BHCK là hình bình hành.
c) Gọi F là giao điểm của tia CH với AB. Tìm giá trị nhỏ nhất của biểu thức: Q=\(\dfrac{AD}{HD}+\dfrac{BE}{HE}+\dfrac{CF}{HF}\).
cho tam giác nhọn ABC đường tròn tâm o đường kính BC cắt AB,AC lần lượt tại D,E . hai đường thẳng BD và CE cắt nhau tại H . a,Chứng minh ADHE là tứ giác nội tiếp đường tròn
b,Chứng minh OD là tiếp tuyến của đường tròn ngoại tiếp tam giacs ADH
c,Cho góc BAC = 60 độ . chứng minh Sabc = Sade
Từ điểm A nằm ngoài đường tròn (O) vẽ hai tiếp tuyến AB và AC (B,C là các tiếp điểm ), đường thẳng qua A cắt đường tròn (O) tại D và E (D nằm giữa A và E, dây DE không đi qua tâm O). Gọi H là trung điẻm của DE, AE cắt BC tại K
a) Chứng minh tứ giác ABOC nội tiếp, xác định tâm đường tròn nội tiếp tứ giác ABOC
b) Chứng minh HA là tia phân giác của góc BHC
c) Chứng minh \(\dfrac{2}{AK}\)=\(\dfrac{1}{AD}\)+\(\dfrac{1}{AE}\)