i: \(=\dfrac{\sqrt{5}-2-\sqrt{5}+2+\sqrt{5}}{5+2\sqrt{5}}=\dfrac{\sqrt{5}}{5+2\sqrt{5}}=\dfrac{1}{\sqrt{5}+2}=\sqrt{5}-2\)
k: \(=\left(4-2\sqrt{3}\right)\left(13+4\sqrt{3}\right)\)
\(=52+16\sqrt{3}-26\sqrt{3}-24=28-10\sqrt{3}\)
i: \(=\dfrac{\sqrt{5}-2-\sqrt{5}+2+\sqrt{5}}{5+2\sqrt{5}}=\dfrac{\sqrt{5}}{5+2\sqrt{5}}=\dfrac{1}{\sqrt{5}+2}=\sqrt{5}-2\)
k: \(=\left(4-2\sqrt{3}\right)\left(13+4\sqrt{3}\right)\)
\(=52+16\sqrt{3}-26\sqrt{3}-24=28-10\sqrt{3}\)
Với a,b,c>0.Cmr
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{4}{2a+b+c}+\frac{4}{a+2b+c}+\frac{4}{a+b+2c}\)
Rút gọn biểu thức
\(E=\sqrt{\frac{3-\sqrt{5}}{3+\sqrt{5}}}+\sqrt{\frac{3+\sqrt{5}}{3-\sqrt{5}}}\)
Cho phương trình \(x_1^2-2x_1+m-3=0\)
Tìm m để phương trình có hai nghiệm phân biệt \(x_1;x_2\)sao cho \(x^1-2x_2+x_1x_2=-12\)
\(\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{x^2+\sqrt{x}}{x-\sqrt{x}+1}\) rút gọn hộ ạ
Rút gọn
Mn giúp mik câu 3 với 8 ạ, camon nhiu:3333
GPT:
a,\(\dfrac{1}{2}\sqrt{x-1}-\dfrac{3}{2}\sqrt{9x-9}+24\sqrt{\dfrac{x-1}{64}}=-17\)
b,\(x-7\sqrt{x-3}+9=0\)
X^3+X^2+X=-1/3