Bài 3:
\(B=\left(\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\right):\dfrac{x+3\sqrt{x}-2\sqrt{x}-6+6}{\sqrt{x}\left(\sqrt{x}+3\right)}\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}=1\)
Bài 6:
\(P=\left(\dfrac{\sqrt{x}}{\sqrt{x}+2}+\dfrac{2}{\sqrt{x}-2}\right):\dfrac{x+4}{\sqrt{x}+2}\)
\(=\left[\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}+\dfrac{2\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\right]:\dfrac{x+4}{\sqrt{x}+2}\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)+2\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}:\dfrac{x+4}{\sqrt{x}+2}\)
\(=\dfrac{x-2\sqrt{x}+2\sqrt{x}+4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}:\dfrac{x+4}{\sqrt{x}+2}\)
\(=\dfrac{x+4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}.\dfrac{\sqrt{x}+2}{x+4}\)
=\(\dfrac{1}{\sqrt{x}-2}\)
Bài 7:
\(M=\left(\dfrac{1}{x-4}-\dfrac{1}{x+4\sqrt{x}+4}\right).\dfrac{x+2\sqrt{x}}{\sqrt{x}}\)
\(=\left[\dfrac{1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\dfrac{1}{\left(\sqrt{x}+2\right)^2}\right].\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{\sqrt{x}}\)
\(=\left[\dfrac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)^2}-\dfrac{\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)^2}\right]\left(\sqrt{x}+2\right)\)
\(=\dfrac{\sqrt{x}+2-\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)^2}.\left(\sqrt{x}+2\right)\)
\(=\dfrac{4\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)^2}\)
\(=\dfrac{4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)