HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
bac ho ko co tình giận gì vì bác đã mất
1) A = \(\frac{x^2+\left(y-z\right)\left(y+z\right)}{y+z}+\frac{y^2+\left(z-x\right)\left(z+x\right)}{z+x}+\frac{\left(x-y\right)\left(x+y\right)+z^2}{x+y}\)
A = \(\frac{x^2}{y+z}+\left(y-z\right)+\frac{y^2}{z+x}+\left(z-x\right)+\left(x-y\right)+\frac{z^2}{x+y}\)
A = \(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\)
Nhân cả hai vế của \(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}=1\) với x ta được:
\(\frac{x^2}{y+z}+\frac{yx}{z+x}+\frac{zx}{x+y}=x\)
Tương tự, ta nhân hai vế với y; z rồi cộng từng vế 2 đẳng thức với nhau ta được:
\(\left(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\right)+\left(\frac{xy}{z+x}+\frac{yz}{z+x}\right)+\left(\frac{xy}{y+z}+\frac{xz}{y+z}\right)+\left(\frac{zx}{x+y}+\frac{yz}{x+y}\right)=x+y+z\)
=> A + \(\frac{\left(x+z\right)y}{z+x}+\frac{\left(y+z\right)x}{y+z}+\frac{z\left(x+y\right)}{x+y}\) = x+ y + z
=> A + y + x + z = x + y + z
=> A = 0
Vậy A = 0