Giả sử cho trước 4 số a, b, c, d
Nếu tính trung bình cộng của 3 số bất kì trong 4 số trên thì ta có 4 số trung bình cộng sau:
\(\frac{a+b+c}{3},\frac{a+b+d}{3},\frac{a+c+d}{3},\frac{b+d+c}{3}\)
Khi đó ta có tổng của 4 số trung bình cộng là:
\(\frac{a+b+c}{3},\frac{a+b+d}{3},\frac{a+c+d}{3},\frac{b+d+c}{3}\)
=\(\frac{\left(a+b+c+d\right)x3}{3}=a+b+c+d\)
Do đó tổng của 4 số ở bất cứ lần viết nào cũng luôn bằng tổng của 4 số ban đầu.
Tổng của 4 số ban đầu là:
3 + 6 + 9 + 12 = 30
Tổng 4 số của bạn Toàn viết là:
17/9 + 13/9 + 10 + 47/3 = 29 ( 29 khác 30 )
Do đó bạn Toàn chắc chắn đã tính sai.