HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
Cho a,b,c >0 thỏa mãn abc=1. Tìm min A=\(\dfrac{a^{2013}+b^{2013}+c^{2013}}{a^{2012}+b^{2012}+c^{2012}}\)
Trong mỗi ô vuông của bảng ô vuông kích thước n\(\times\)n (n là số nguyên dương lẻ) ta viết một trong hai số 1 và -1, một cách tùy ý. Dưới mỗi cột ta viết tích tất cả các số trong cột đó, về phía bên phải của mỗi hàng ta viết tích tất cả các số của hàng đó. Chứng minh rằng tổng tất cả 2n tích vừa viết là một số khác 0.
Cho các số thực a,b,c thỏa mãn \(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}=1\). Chứng tỏ rằng trong 3 số a,b,c tồn tại a,b,c tồn tại 1 số không âm, tồn tại 1 số không dương.
Giair phương trình: \(\left(x+2\right)\sqrt{3x+6}-2\sqrt{x^2+x-1}+3x^2-10=0\)
Cho các số thực dương a,b thỏa mãn: (a+1)(b+1)=4ab. Tìm GTLN của
P=\(\dfrac{1}{\sqrt{3a^2+1}}+\dfrac{1}{\sqrt{3b^2+1}}\)
Giair phương trình: \(2\left(3x+1\right)\sqrt{2x^2-1}=10x^2+3x-6\)
Giải phương trình nghiệm nguyên: \(x^2y-5x^2-xy-x+y-1=0\)
Giair phương trình nghiệm nguyên: \(x^2\left(x-y\right)=5\left(y-1\right)\)