HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
\(n_{H_2}=0,2\left(mol\right)\)
\(2H_2+O_2\rightarrow2H_2O\)
0,2 0,1 0,2 (mol)
a) \(m_{H_2O}=0,2.18=3,6\left(g\right)\)
b) \(V_{O_2}=0,1.22,4=2,24\left(l\right)\)
A
4)a)\(=\left|\sqrt{3}+\sqrt{2}\right|-\left|\sqrt{2}-\sqrt{3}\right|\)
\(=\sqrt{3}+\sqrt{2}-\sqrt{3}+\sqrt{2}\left(do\sqrt{3}>\sqrt{2}\right)\)
\(=2\sqrt{2}\)
b)\(=\left|\sqrt{15}-4\right|-\left|3-\sqrt{15}\right|\)
\(=4-\sqrt{15}-\sqrt{15}+3\) (do \(4>\sqrt{15}>3\))
\(=7-2\sqrt{15}\)
3)a)\(=\dfrac{\sqrt{6}\left(\sqrt{6}+1\right)}{\sqrt{6}+1}-\dfrac{\sqrt{6}\left(\sqrt{6}-1\right)}{\sqrt{6}-1}\)
\(=\sqrt{6}-\sqrt{6}=0\)
b)\(=\dfrac{\sqrt{3}\left(\sqrt{5}+\sqrt{2}\right)}{\sqrt{5}+\sqrt{2}}-\dfrac{\sqrt{2}\left(\sqrt{5}-\sqrt{2}\right)}{\sqrt{5}-\sqrt{2}}\)
\(=\sqrt{3}-\sqrt{2}\)
\(x+\dfrac{x}{2}=\dfrac{3}{4}\)
\(\dfrac{2x}{2}+\dfrac{x}{2}=\dfrac{3}{4}\)
\(\dfrac{3x}{2}=\dfrac{3}{4}\)
\(3x.4=2.3\)
\(12x=6\)
\(x=\dfrac{1}{2}\)
1C
2C
3A
4B
5D
6C
7B
8C
9A
10B
11C
12D
14A
15B
16D
17A
18C
19A
\(\left(2x-7y\right)^2\)
\(\left(6-x\right)^2\)
\(-\left(x+2y\right)^2\)
\(-\left(x-3\right)^2\)
\(\left(3-5x\right)^2\)
1)\(\left(x+2\right)^2\)
2)\(\left(x+3\right)^2\)
3)\(\left(2x+1\right)^2\)
4)\(\left(3+2x\right)^2\)
5)\(\left(x-1\right)^2\)
6)\(\left(x-4\right)^2\)
7)\(\left(6-x\right)^2\)
8)\(\left(2x-3y\right)^2\)
9)\(\left(3x-1\right)^2\)
a)\(S=\left(\dfrac{x+1+\sqrt{x}}{x+1}\right):\left(\dfrac{x+1-2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+1\right)}\right)\) \(đk:x\ne\pm1\)
\(S=\dfrac{x+1+\sqrt{x}}{x+1}.\dfrac{\left(\sqrt{x}-1\right)\left(x+1\right)}{\left(\sqrt{x}-1\right)^2}\)
\(S=\dfrac{x+1+\sqrt{x}}{\sqrt{x}-1}\)
b)\(x=4-2\sqrt{3}=\left(\sqrt{3}-1\right)^2\left(TMĐK\right)\)
\(\sqrt{x}=\sqrt{3}-1\)
Từ đó ta có :
\(S=\dfrac{4-2\sqrt{3}+1+\sqrt{3}-1}{\sqrt{3}-1-1}\)
\(S=-5-2\sqrt{3}\)