HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
Đặt \(f\left(x\right)=\left(x-a_1\right)\left(x-a_3\right)\left(x-a_5\right)+\left(x-a_2\right)\left(x-a_4\right)\left(x-a_6\right)\)
\(f\left(a_1\right)=\left(a_1-a_2\right)\left(a_1-a_4\right)\left(a_1-a_6\right)< 0\)
\(f\left(a_2\right)=\left(a_2-a_1\right)\left(a_2-a_3\right)\left(a_2-a_5\right)>0\)
\(f\left(a_4\right)=\left(a_4-a_1\right)\left(a_4-a_3\right)\left(a_4-a_5\right)< 0\)
\(f\left(a_6\right)=\left(a_6-a_1\right)\left(a_6-a_3\right)\left(a_6-a_5\right)>0\)
\(\Rightarrow f\left(x\right)\) có nghiệm thuộc các khoảng \(\left(a_1,a_2\right);\left(a_2,a_4\right);\left(a_4,a_6\right)\)
mà bậc cao nhất của f(x) là 3 nên f(x) có tối đa 3 nghiệm
=> dpcm
\(B=\lim\limits_{x\rightarrow1}\dfrac{\left(4x+5-9\right)\left(\sqrt[3]{\left(5x+3\right)^2}+2\sqrt[3]{5x+3}+2^2\right)}{\left(5x+3-8\right)\left(\sqrt{4x+5}+3\right)}\)
\(=\lim\limits_{x\rightarrow1}\dfrac{4\cdot\left(\sqrt[3]{\left(5x+3\right)^2}+2\sqrt[3]{5x+3}+2^2\right)}{5\cdot\left(\sqrt{4x+5}+3\right)}=\dfrac{8}{5}\)
tìm đạo hàm à bạn
\(k=\dfrac{d'}{d}=\dfrac{A'B'}{AB}=2\Rightarrow d'=2d\)
\(\dfrac{1}{d'}+\dfrac{1}{d}=\dfrac{1}{f}\Leftrightarrow\dfrac{1}{2d}+\dfrac{1}{d}=\dfrac{1}{12}\Rightarrow d=18\left(cm\right)\)
\(y'=\dfrac{-4}{\left(x-1\right)^2}\)
a) \(y'=-1\Rightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)
pt tiếp tuyến : \(\left[{}\begin{matrix}y=-\left(x-3\right)+4=-x+7\\y=-\left(x+1\right)=-x-1\end{matrix}\right.\)
b) \(k=\pm1\)
\(y'< 0\forall x\Rightarrow y'=-1\)
làm như trên
c) hoành độ tiếp điểm \(x=\pm2\)
TH x = 2
\(k=-4\)
pt tiếp tuyến : \(y=-4\left(x-2\right)+6=-4x+14\)
TH x = -2
\(k=-\dfrac{4}{9}\)
pt tiếp tuyến : \(y=-\dfrac{4}{9}\left(x+2\right)+\dfrac{2}{3}=-\dfrac{4}{9}x-\dfrac{2}{9}\)
dùng cái gõ công thức đi bạn, đọc khó hiểu quá
\(\overrightarrow{AB}\left(7;3\right)\) là 1 vecto chỉ phương của đt
=> gọi \(\overrightarrow{n}\left(-3;7\right)\) là vecto pháp tuyến của đt
Đt đi qua A(-3;2)
=> pt tổng quát của đt : \(-3\left(x+3\right)+7\left(y-2\right)=0\Leftrightarrow-3x+7y-23=0\)
Cho hàm số \(f\left(x\right)=\left\{{}\begin{matrix}\dfrac{e^{4-3x}-e^4}{x}khix\ne0\\3ae^4khix=0\end{matrix}\right.\) . Giá trị của a để f(x) liên tục tại x = 0 là
\(y'=\left(m-1\right)\cos2x\cdot2-2\cdot\sin x-2m=0\)
\(\Leftrightarrow\left(m-1\right)\left(1-2\sin^2x\right)-\sin x-m=0\)
\(\Leftrightarrow2\left(1-m\right)\sin^2x-\sin x-1=0\)
bạn tự làm nốt nha