Cho biểu thức:
\(A=\dfrac{\sqrt{x}-1}{\sqrt{x}-5};B=\dfrac{\sqrt{x}+3}{\sqrt{x}+1}+\dfrac{5}{\sqrt{x}-1}+\dfrac{4}{x-1}\), \(x\ge0,x\ne1,x\ne25.\)
a) Chứng minh rằng \(B=\dfrac{\sqrt{x}+6}{\sqrt{x}-1}\).
b) Tính giá trị của A khi x = 49.
c) Tìm giá trị của x để B > 1.
d) So sánh \(C=\left(A.B+\dfrac{x-5}{\sqrt{x}-5}\right).\dfrac{\sqrt{x}-5}{\sqrt{x}}\) với 3 \(\left(x>0,x\ne1,x\ne25\right)\)
Cho hình vuông ABCD và điểm E tùy ý trên cạnh BC. Tia Ax vuông góc với AE tại A, cắt tia CD tại F.
a) Chứng minh tam giác AEF cân.
b) Kẻ đường trung tuyến AI của tam giác AEF . Tia AI cắt cạnh CD tại K. Chứng minh tam giác AKF đồng dạng với tam giác CAF.
c) Cho AB = 4 cm, \(BE=\dfrac{3}{4}BC\). Tính diện tích của tam giác AEF.
d) Gọi J là giao điểm của tia AE và tia DC. Chứng minh rằng tổng \(\dfrac{1}{AE^2}+\dfrac{1}{AJ^2}\) không đổi khi E di động trên cạnh BC.
Cho tam giác nhọn ABC có đường cao AH. Từ H kẻ HE vuông góc với AB, HF vuông góc với AC (E thuộc AB, F thuộc AC).
a) Chứng minh: \(\widehat{AFE}=\widehat{ABC}\)
b) Đường thẳng EF cắt BC tại M. Chứng minh: ME . MF = MB . MC.
c) Cho biết AC= 10 cm, \(\widehat{BAC=60^o}\), \(\widehat{ABC}=80^o\) . Tính độ dài đoạn vuông góc hạ từ A xuống EF.