HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
Cho tam giác ABC có \(\widehat{A}=60^o\). Vẽ các đường cao BD và CE. Chứng minh rằng:
a) Tam giác ADB đồng dạng với tam giác AEC.
b) Tam giác ADE đồng dạng với tam giác ABC.
c) DE = \(\dfrac{1}{2}BC\)
Không dùng mày tính hoặc bảng số, tính:
A =\(sin^25^o+sin^225^o+sin^245^o+sin^265^o+sin^285^o\).
Cho góc nhọn α, biết cos α = \(\dfrac{1}{5}\). Tính sin α, tan α, cot α.
Cho tam giác ABC vuông tại A có AB = 60mm, AC = 8cm. Tính các tỉ số lượng giác của góc B. Từ đó suy ra tỉ số lượng giác của góc C.
Giải các phương trình sau:
a) \(\sqrt{25x^2-9}-2\sqrt{5x+3}=0\)
b) \(\dfrac{\sqrt{x-3}}{\sqrt{2x+1}}=2\)
c) \(\sqrt{x^2-2x+1}+\sqrt{x^2-4x+4}=3\)
Rút gọn biểu thức sau:
a) A = \(\dfrac{x+\sqrt{5}}{x^2+2x\sqrt{5}+5}\), x ≠ \(-\sqrt{5}\)
b) B = \(\dfrac{a-2\sqrt{a}-3}{a-9}\), a ≥ 0, a ≠ 9
c) C = \(\sqrt{x-1-2\sqrt{x-2}}\)
Thực hiện phép tính:
a) \(\dfrac{2\sqrt{8}-\sqrt{12}}{\sqrt{18}-\sqrt{48}}-\dfrac{\sqrt{5}+\sqrt{27}}{\sqrt{30}+\sqrt{162}}\)
b) \(\left(1+\sqrt{2}+\sqrt{3}\right)\left(1-\sqrt{2}-\sqrt{3}\right)\)