HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
Giải pt:
\(x^{10}-x^6+x^2-2x+5=0\)
\(7x^8-x^5+x^2-x+3=0\)
\(\sqrt{x\left(3x+1\right)}-\sqrt{x\left(x-1\right)}=2\sqrt{x^2}\)
Cho các số x, y, z thoả mãn: \(\left\{{}\begin{matrix}x+y+z=a\\\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{c}\\x^2+y^2+z^2=b^2\end{matrix}\right.\)
Tính \(P=x^3+y^3+z^3\) theo a, b, c.
Cho x, y, z là các số thực thoả mãn: \(\left\{{}\begin{matrix}x+y+z=1\\x^2+y^2+z^2=1\\x^3+y^3+z^3=1\end{matrix}\right.\)
Tính: \(M=x^{10}+y^{100}+z^{1000}\)
Cho x, y, z là các số thoả mãn:
\(\left\{{}\begin{matrix}\dfrac{x}{3}+\dfrac{y}{12}-\dfrac{z}{4}=1\\\dfrac{x}{10}+\dfrac{y}{5}+\dfrac{z}{3}=1\end{matrix}\right.\)
Tính \(M=x^{10}+y^{100}+z^{1000}\)
Cho các số thực a, b, c, x, y, z thoả mãn abc khác 0 và:
\(\dfrac{x^4+y^4+z^4}{a^4+b^4+c^4}=\dfrac{x^4}{a^4}+\dfrac{y^4}{b^4}+\dfrac{z^4}{c^4}\)
Tính: \(P=10x^{10}+100y^{100}+1000z^{1000}+10000\)
Tìm \(x_1;x_2;...;x_n\) thoả mãn:
\(\sqrt{x_1^2-1^2}+2\sqrt{x_2^2-2^2}+...+n\sqrt{x_n^2-n^2}=\dfrac{1}{2}\left(x_1^2+x_2^2+...+x_n^2\right)\)
Tìm min, max của: \(P=\sqrt[4]{1+x}+\sqrt[4]{1-x}+\sqrt[4]{1-x^2}\)
G.sử x, y là các số thực thoả mãn: \(\left(x+\sqrt{3+x^2}\right)\left(y+\sqrt{3+y^2}\right)=9\)
Tìm min: \(P=x^2+xy+y^2\)