Áp dụng định lý Bê-du, ta có :
Khi \(P\left(x\right)\)chia hết cho \(x-2\Rightarrow P\left(2\right)=0\)
\(\Rightarrow6.2^5+a.2^4+b.2^3+2^2+c.2+450=0\)
\(\Rightarrow192+16a+8b+4+2c+450=0\)
\(\Rightarrow16a+8b+2c=-646\)
\(\Rightarrow8a+4b+c=-323\)
Khi \(P\left(x\right)\)chia hết cho \(x-3\Rightarrow P\left(3\right)=0\)
\(\Rightarrow P\left(3\right)=6.3^5+a.3^4+b.3^3+3^2+3c+450=0\)
\(\Rightarrow1458+81a+27b+9+3c+450=0\)
\(\Rightarrow81a+27b+3c=-1917\)
\(\Rightarrow27a+9b+c=-639\)
Khi \(P\left(x\right)\)chia hết cho \(x-5\Rightarrow P\left(5\right)=0\)
Làm tương tự, có :
\(125a+25b+c=-3845\)
Bạn tự xét phần tiếp theo vì ở đây đã có 3 dữ kiện để tìm a, b , c rồi.