Chủ đề:
Chương 4: BẤT ĐẲNG THỨC, BẤT PHƯƠNG TRÌNHCâu hỏi:
Tìm a để với mọi x
f(x)= (x-2)2 + 2| x-a | \(\ge\) 3
Cho tam giác ABC. Hãy rút gọn:
\(a,A=cos^2\left(540^0+\frac{B}{2}\right)+cos^2\frac{1080^0+A+C}{2}+tan\frac{B}{2}tan\frac{A+C}{2}\)
b,\(B=\frac{sin\left(\frac{B}{2}+720^0\right)}{cos\frac{A+C}{2}}+\frac{cos\left(\frac{B}{2}-900^0\right)}{sin\frac{A+C}{2}}-\frac{cos\left(A+C\right)}{sinB}.tanB\)
1. Tìm tất cả các giá trị của tham số m để bất phuong trình sau có nghiệm:
\(\sqrt{x-1}-2\sqrt[4]{x^2-x}+m\sqrt{x}\le0\)
2. Tìm giá trị nguyên nhỏ nhất của tham số m để bất phuong trình sau có nghiệm:
\(3\sqrt{x-3}+m\sqrt{x+3}>2\sqrt[4]{x^2-9}\)