Tuyển Cộng tác viên Hoc24 nhiệm kì 28 tại đây: https://forms.gle/GrfwFgzveoKLVv3p6

Học tại trường Chưa có thông tin
Đến từ Bắc Ninh , Chưa có thông tin
Số lượng câu hỏi 13
Số lượng câu trả lời 89
Điểm GP 6
Điểm SP 30

Người theo dõi (1)

$Mr.VôDanh$

Đang theo dõi (2)

$Mr.VôDanh$

Câu trả lời:

a, áp dụng định lý pytago vào ΔDEF ta được:

EF2=DE2+DF2=3.3+4.4=25

⇒EF=5(cm)

XÉT ΔDEF,ΔHED CÓ:

\(\widehat{D}\)=\(\widehat{DHE}\)= 90O

Góc E chung

⇒ΔDEF đồng dạng ΔHED

⇒DE/HE = EF/DE

Hay 3/HE =5/3 ⇒HE = 3.3/5=1,8(cm)

Xét tam giác DEF, tam giác HDF có

\(\widehat{D}\)=\(\widehat{DHF}\)=90o

góc F chung

tam giác DEF đồng dạng tam giác HDF

⇒DF/HF=EF/DF

Hay 4/HF=5/4 ⇒HF = 4.4/5=3.2(cm)

b, xét tam giác DEG, tam giác HEI có

góc D = góc DHE=90o

góc DEG= góc GEF

⇒tam giác DEG đồng dạng tam giác HEI

⇒DE/HE=DG/HI

c, Vì tam giác DEG đồng dạng tam giác HEI nên\(\widehat{DGE}\) =\(\widehat{HIE}\)

\(\widehat{DIG}\) =\(\widehat{HIE}\)(đối đỉnh)

\(\widehat{DIG}\)=\(\widehat{DGE}\)⇒ΔDIG cân tại D

mà DK là trung tuyến của ΔDIG ⇒ DK đồng thời là phân giác

⇒DK⊥IG

Trong ΔDEF có EG là phân giác

⇒DG/GF=DE/EF

=> DG/DE=GF/EF=(DG+GF)/(DE+EF)

⇒DG/DE=DF/(DE+EF)

Hay DG/3=4/8=>DG=3,4/8=1,5(cm)

T a có ΔDIG cân => DI=DG=1,5(cm)

Ta lại có DE/HE=DG/HI(câu b)

hay 3/1,8=1,5/HI

=>HI=1,5.1,8/ 3=0,9(cm)

Áp dụng định lý Pytago vào ΔDEG ta được:

EG2=DG2+DE2=1,5.1,5+3.3=11,25

=>EG=\(\sqrt{11,25}\)\(\approx\)3,4(cm)

Vì tam giác DEG đồng dạng tam giác HEI

=>EG/EI=DE/HE

Hay 3,4/EI=3/1.8

=>EI=3,4.1,8/3=2,04(cm)

Ta có EG=EI+IG

=>IG=EG-EI=3,4-2,04=1,36(cm)

Ta có KG=IG/2=1,36/2=0,68(cm)

vì DK⊥IG=>ΔDGK vuông tại k

áp dụng định lý pytago vào ΔDGK ta được:

DG2=DK2+KG2=>DK2=DG2-KG2= 1,52-0,682\(\approx\)1,8

=>DK=\(\sqrt{1,8}\)\(\approx\)1,3(cm)

=>SDGK=1/2.DK.KG=1/2.1,3.0.68=0,442(cm2)

Chắc đúng thôi ạ