HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
Cho đường tròn (O; 2 cm) và điểm A năm ngoài (O) sao cho OA = 4 cm. Từ A vẽ hai tiếp tuyến AB, AC tới (O) trong đó B, C là các tiếp điểm. Khi đó, chu vi tam giác ABC bằng:
Cho tam giác ABC cố định, đường phân giác AI (I thuộc BC). Trên đoạn thẳng IC lấy điểm H. Từ H kẻ đường thẳng song song với AI, cắt AB kéo dài tại E và cắt AC tại F. Chứng minh:
a) Đường trung trực của EF luôn đi qua đỉnh A của tam giác ABC;
b) Khi H di động trên đoạn thẳng ỈC thì đường trung trực của đoạn thẳng EF luôn cố định.
Cho tam giác ABC, đường phân giác AD. Trên tia AC lấy điểm E sao cho AE = AB. Chứng minh:
a) DB = DE;
b) AD là đường trung trực của BE.
Cho tam giác DEF có DE = DF. Lấy điểm K nằm trong tam giác sao cho KE = KF. Kẻ KP vuông góc với DE (P thuộc DE), KQ vuông góc với DF (Q thuộc DF). Chứng minh:
a) K thuộc đường trung trực của EF và PQ;
b) DK là đường trung trực của EF và PQ. Từ đó suy ra PQ//EF.
đap số 96774 nha