Cho hbh ABCD, trên BC và BD lấy điểm H và K sao cho \(\overrightarrow{BH}=\frac{1}{5}\overrightarrow{BC}\), \(\overrightarrow{BK}=\frac{1}{6}\overrightarrow{BD}\) .
a) Phân tích \(\overrightarrow{AK}\) và \(\overrightarrow{AH}\) theo \(\overrightarrow{AB}\) , \(\overrightarrow{AD}\).
b) Chứng minh A, K, H thẳng hàng.
Cho ΔABC có M nằm trên cạnh BC sao cho CM = \(\frac{1}{2}\) BC K là trung điểm AM, đặt \(\overrightarrow{BA}=\overrightarrow{a}\) , \(\overrightarrow{BC}=\overrightarrow{c}\) . Chứng minh: \(\overrightarrow{BK}=\frac{1}{2}\overrightarrow{a}+\frac{1}{3}\overrightarrow{c}\) . Gọi I là điểm trên cạnh AC sao cho \(\overrightarrow{AI}=\frac{2}{5}\overrightarrow{AC}\) . Chứng minh : B, I, K thẳng hàng.
1) Cho mệnh đề A = “∃n ∈ N : 3n + 1 là số lẻ”, mệnh đề phủ định của mệnh đề A và tính đúng, sai của mệnh đề phủ định? Giải thích?
2) Cho tập hợp A = {1, 2, 3, 4, x, y}. Xét các mệnh đề sau: (I): “3 ∈ A”, (II): “{3; 4} ∈ A”, (III): “{a, 3, b} ∈ A”. Mệnh đề nào đúng?
3) Cho hai tập hợp A = {0; 2} và B = {0; 1; 2; 3; 4}. Có bao nhiêu tập hợp X thỏa mãn \(A\cup X=B\)