Giải phương trình:
\(4x^2-9-\left(2x+3\right)\left(2x-1\right)=0\)
\(\Leftrightarrow\left(2x-3\right)\left(2x+3\right)-\left(2x+3\right)\left(2x-1\right)=0\)
\(\Leftrightarrow\left(2x+3\right)\left(2x-3-2x+1\right)=0\)
\(\Leftrightarrow\left(2x-3\right).\left(-2\right)=0\)
\(\Leftrightarrow2x-3=0\)
\(\Leftrightarrow x=\dfrac{-3}{2}\)
Vậy nghiệm của phương trình là \(x=\dfrac{-3}{2}\) .
\(x^3+x^2-4x=4\)
\(\Leftrightarrow x^3+x^2-4x-4=0\)
\(\Leftrightarrow x^2\left(x+1\right)-4\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-4\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-2\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\x-2=0\\x+2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=2\\x=-2\end{matrix}\right.\)
Vậy tập nghiện của phương trình là S= { -2; -1; 2}.
\(x^2\left(x^2+4\right)-x^2-4=0\)
\(\Leftrightarrow x^2\left(x^2+4\right)-\left(x^2+4\right)=0\)
\(\Leftrightarrow\left(x^2+4\right)\left(x^2-1\right)=0\)
\(\Leftrightarrow x^2-1=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
Vậy phương trình có tập nghiệm là S= {-1; 1}.
\(\left(3x-3\right)^2=\left(x+5\right)^2\)
\(\Leftrightarrow\left(3x-3\right)^2-\left(x+5\right)^2=0\)
\(\Leftrightarrow\left(3x-3-x-5\right)\left(3x-3+x+5\right)=0\)
\(\Leftrightarrow\left(2x-8\right)\left(4x+2\right)=0\)
\(\Leftrightarrow2\left(x-4\right).2\left(2x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\2x+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=\dfrac{-1}{2}\end{matrix}\right.\)
Vậy phương trình có tập nghiệm là S\(=\left\{\dfrac{-1}{2};4\right\}\) .
\(\left(2x-3\right)^2=\left(x+5\right)^2\)
\(\Leftrightarrow\left(2x-3\right)^2-\left(x+5\right)^2=0\)
\(\Leftrightarrow\left(2x-3-x-5\right)\left(2x-3+x+5\right)=0\)
\(\Leftrightarrow\left(x-8\right)\left(3x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-8=0\\3x+2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=8\\x=\dfrac{-2}{3}\end{matrix}\right.\)
Vậy phương trình có tập nghiệm là S\(=\left\{\dfrac{-2}{3};8\right\}\) .
\(x^2\left(x-1\right)-\left(4x^2+8x-4\right)=0\)
\(\Leftrightarrow x^2\left(x-1\right)-4\left(x^2+2x-1\right)=0\)
\(\Leftrightarrow x^2\left(x-1\right)-4\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(x-1\right)\left[x^2-4\left(x-1\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)^2=0\)
\(\Leftrightarrow x-1=0\)
\(\Leftrightarrow x=1\)
Vậy nghiệm của phương trình là x=1.