Học tại trường Chưa có thông tin
Đến từ Chưa có thông tin , Chưa có thông tin
Số lượng câu hỏi 1
Số lượng câu trả lời 523
Điểm GP 189
Điểm SP 717

Người theo dõi (153)

Đang theo dõi (0)


Câu trả lời:

ĐKXĐ các bài bạn tự tìm nhé!

a)\(\sqrt{8x+1}+\sqrt{3x-5}=\sqrt{7x+4}+\sqrt{2x-2}\)

<=>\(\sqrt{8x+1}-\sqrt{2x-2}=\sqrt{7x+4}-\sqrt{3x-5}\)

Bình phương 2 vế

=>\(10x-1-2\sqrt{\left(8x+1\right)\left(2x-2\right)}=10x-1-2\sqrt{\left(7x+4\right)\left(3x-5\right)}\)

<=>\(\sqrt{\left(8x+1\right)\left(2x-2\right)}=\sqrt{\left(7x+4\right)\left(3x-5\right)}\)

=>16x2-14x-2=21x2-23x-20

<=>5x2-9x-18=0

<=>x=3 hoặc x=\(-\dfrac{6}{5}\)

Sau đó thử lại nghiệm xem có thõa mãn không (dù tìm ĐKXĐ rồi vẫn phải thử nhé)

b)

\(\sqrt{x+3-4\sqrt{x-1}+\sqrt{x+8-6\sqrt{x-1}}}=1\)

<=>\(\sqrt{\left(\sqrt{x-1}-2\right)^2}+\sqrt{\left(\sqrt{x-1}-3\right)^2}=1\)

<=>\(\left|\sqrt{x-1}-2\right|+\left|\sqrt{x-1}-3\right|=1\)

*)x\(\ge10\)

<=>\(\sqrt{x-1}-2+\sqrt{x-1}-3=1\)

<=>\(2\sqrt{x-1}=6\)

<=>x=10(TM)

*)5\(\le x< 10\)

<=>\(\sqrt{x-1}-2+3-\sqrt{x-1}=1\left(LĐ\right)\)

*)1\(\le x< 5\)

<=>\(2-\sqrt{x-1}+3-\sqrt{x-1}=1\)

<=>\(2\sqrt{x-1}=4\)

<=>x=5(L)

Vậy 5\(\le x\le10\)

c)\(\sqrt{6-x}+\sqrt{x+2}=x^2-6x+13\)

Vế phải:x2-6x+9+4=(x-3)2+4\(\ge4\)(1)

Vế trái: Áp dụng BĐT Bunhia

Ta có:\(\left(\sqrt{6-x}+\sqrt{x+2}\right)^2\le\left(1+1\right)\left(6-x+x+2\right)=16\)

=>Vế trái \(\le4\)(2)

Từ 1 và 2=>Phương trình tương đương:\(\left\{{}\begin{matrix}\left(x-3\right)^2=0\\6-x=x+2\end{matrix}\right.\)<=>\(\left\{{}\begin{matrix}x=3\\x=2\end{matrix}\right.\)(L)

Vậy PTVN

d)\(\sqrt{x^2-x}+\sqrt{x^2+x-2}=0\)

<=>\(\sqrt{x^2-x}=-\sqrt{x^2+x-2}\)

Bình phương 2 vế

=>x2-x=x2+x-2

<=>2x=2

<=>x=1

Thử lại thõa mãn Vậy x=1