4.Đặt M = \(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}\)với a,b,c \(\in\) N
Ta có:\(\dfrac{a}{a+b}>\dfrac{a}{a+b+c}\)
\(\dfrac{b}{b+c}>\dfrac{b}{a+b+c}\)
\(\dfrac{c}{c+a}>\dfrac{c}{a+b+c}\)
Suy ra:\(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}>\dfrac{a}{a+b+c}+\dfrac{b}{a+b+c}+\dfrac{c}{a+b+c}\)
M > \(\dfrac{a+b+c}{a+b+c}\)
M > 1
Vậy M < 1 (1)
Lại có:\(\dfrac{a}{a+b}< \dfrac{a+b}{a+b+c}\)
\(\dfrac{b}{b+c}< \dfrac{b+c}{a+b
+c}\)
\(\dfrac{c}{c+a}< \dfrac{c+a}{a+b+c}\)
Suy ra:\(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}< \dfrac{a+b}{a+b+c}+\dfrac{b+c}{a+b+c}+\dfrac{c+a}{a+b+c}\)
M < \(\dfrac{a+b+b+c+c+a}{a+b+c}\)
M < \(\dfrac{2\left(a+b+c\right)}{a+b+c}\)
M < 2
Vậy M < 2 (2)
Từ (1) và (2) suy ra : \(1< \dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}< 2\)