HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
\(y'=\left(2m+1\right)\cos x+3-m\)
Hàm số đã cho đồng biến trên R \(\Leftrightarrow y'\ge0,\forall x\in R\)
\(\Leftrightarrow\left(2m+1\right)\cos x\le m-3\) (1)
*TH: \(2m+1< 0\Leftrightarrow m< \frac{-1}{2}\), ta có
\(\left(1\right)\Leftrightarrow\cos x\ge\frac{m-3}{2m+1}\) (không thoả với mọi x)
*TH: \(2m+1>0\Leftrightarrow m>\frac{-1}{2}\), ta có
\(\left(1\right)\Leftrightarrow\cos x\le\frac{m-3}{2m+1}\) (2)
(2) đúng với mọi x khi và chỉ khi \(\left|\frac{m-3}{2m+1}\right|>1\Leftrightarrow\left[\begin{array}{nghiempt}m< -4\\m>\frac{2}{3}\end{array}\right.\)
kết hợp \(m>\frac{-1}{2}\) ta có m > 3/2 là giá trị cần tìm
gọi ƯCLN(n+3;2n+5)=d.theo bài ra ta có:
n+3 chia hết cho d
=>2(n+3) chia hết cho d
=>2n+6 chia hết cho d
=>2n+6-2n-5 chia hết cho d
=>1 chia hết cho d
=>d=1
=>ƯC(n+3;2n+5)={-1;1}
vậy ƯC(n+3;2n+5)={-1;1}
ĐK: x > 0
\(0< x< 1\Leftrightarrow\log_2x< 0\)
Đặt \(t=\log_2x\), pt đã cho trở thành \(t^2-2mt+m+2=0\) (1)
YCBT ↔ pt (1) có hai nghiệm âm phân biệt
\(\Leftrightarrow\begin{cases}\Delta'>0\\S< 0\\P>0\end{cases}\) \(\Leftrightarrow\begin{cases}m^2+3m+2>0\\2m< 0\\m+2>0\end{cases}\) \(\Leftrightarrow-1< m< 0\)
888+88+8+8+8
chắc z. mà dấu. là dấu tách lớp à???
735 = 732+3 = 732 . 73 = (....1) . (......3) = (.....3)
=> 735 có tận cùng là 3
1) ĐK: \(x\ge1\)
Pt \(\Leftrightarrow\sqrt{5x-1}-3-\left(\sqrt{3x-2}-2\right)-\left(\sqrt{x-1}-1\right)=0\)
\(\Leftrightarrow\frac{5x-1-9}{\sqrt{5x-1}+3}-\frac{3x-2-4}{\sqrt{3x-2}+2}-\frac{x-1-1}{\sqrt{x-1}+1}=0\)
\(\Leftrightarrow\frac{5\left(x-2\right)}{\sqrt{5x-2}+3}-\frac{3\left(x-2\right)}{\sqrt{3x-2}+2}-\frac{x-2}{\sqrt{x-1}+1}=0\)
\(\Leftrightarrow\left(x-2\right)\left(\frac{5}{\sqrt{5x-2}+3}-\frac{3}{\sqrt{3x-2}+2}-\frac{1}{\sqrt{x-1}+1}\right)=0\)
\(\Leftrightarrow x=2\) (nhận)
2) ĐK: \(x^2+5x+2\ge0\Leftrightarrow\left[\begin{array}{nghiempt}x\le\frac{-5-\sqrt{17}}{2}\\x\ge\frac{-5+\sqrt{17}}{2}\end{array}\right.\)
bpt \(\Leftrightarrow x^2+5x+4-3\sqrt{x^2+5x+2}< 6\)
Đặt \(t=\sqrt{x^2+5x+2}\left(t\ge0\right)\) , bất pt trở thành:
\(t^2+2-3t< 6\Leftrightarrow t^2-3t-4< 0\Leftrightarrow-1< t< 4\)
Kết hợp điều kiện được: \(0\le t< 4\Rightarrow0\le\sqrt{x^2+5x+2}< 4\Leftrightarrow x^2+5x+2< 16\)
\(\Leftrightarrow x^2+5x-14< 0\Leftrightarrow-7< x< 2\)
Kết hợp điều kiện, bất pt đã cho có tập nghiệm:
(-7; \(\frac{-5-\sqrt{17}}{2}\)] \(\cup\) [ \(\frac{-5+\sqrt{17}}{2}\); 2)
Cu → Cu2+ + 2e
ne = 2nCu = 5 (mol)
8HCl + 2KMnO4 → 3Cl2 + 2MnO2 + 2KCl + 4H2O
nKMnO4 = 31,6 / 158 = 0,2 (mol)
nCl2 = nKMnO4 * 3/2 * 80% = 0,24 (mol)
→ VCl2 = 0,24 * 22,4 = 5,376 (l)