HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
b)
TH1 : \(x^2-1\ge0< =>x\le-1..hoặc...x\ge1\) và \(x^2-20\le0< =>-\sqrt{20}\le x\le\sqrt{20}\)
vậy \(-\sqrt{20}\le x\le-1\) hoặc \(1\le x\le\sqrt{20}\)
TH2 : \(x^2-1\le0< =>-1\le x\le1\) và \(x^2-20\ge0< =>x\le-\sqrt{20}..hoặc...x\ge\sqrt{20}\)
vậy ko có gtri của x thỏa mãn
KẾT LUẬN
\(-\sqrt{20}\le x\le-1\) hoặc \(1\le x\le\sqrt{20}\)
a) pt <=> 2x-1 = x+3 <=> x = 4 hoặc 2x-1 = - x-3 <=> x = -2/3
gọi ngày chủ nhật có ngày lẻ thứ nhất là ngày a ( ngày lẻ ) ( a>0 )
=> ngày chủ nhật thứ 2 trong tháng đó sẽ là ngày a+7 ( ngày chẵn )
=> ngày chủ nhật thứ 3 trong tháng đó là ngày a +7+7 ( ngày lẻ)
=> ngày chủ nhật thứ 4 trong tháng đó là ngày a + 7+7 +7 ( ngày chẵn)
=> ngày chủ nhật thứ 4 trong tháng đó là ngày a +7+7+7 +7 ( ngày lẻ)
mà 1 tháng có nhiều nhất 31 ngày
Để 1 tháng có 3 ngày chủ nhật lẻ thì a +7 +7 +7 +7 \(\le\) 31 <=> a \(\le\) 3 ... vì a là số lẻ => a = { 1;3 }
+) với a = 1 thì ngày 26 sẽ vào thứ 5
+) với a= 3 thì ngày 26 sẽ vào thứ 3
câu 3 : số cần tìm có chữ số tận cùng là 0 thì chia hết cho 2;5
để số cần tìm chia hết cho 3 ;9 thì tổng các chữ số đó pải chia hết cho 9
mà số tự nhiên cần tìm đó là nhỏ nhất => số cần tìm là 90
câu 4 :
số chia hết cho 2 ( số đó # 0 ) thì có chữ số tận cùng là { 0;2;4;6;8 }
số chia hết cho 5 ( số đó #0 ) thì có chữ số tận cùng là { 0;5}
vậy số chia hết cho 2;5 có chữ số tận cùng là 0
.............................................................................
câu 3 bn giải thích chi tiết như câu 4 ý nhé ...câu 3 mk làm gộp cho nhanh
\(pt< =>x^2-6x+9=x^2-6x+74\)
<=> 9 = 74 ( vô lí ) => pt vô nghiệm
bạn lưu ý trường hợp bài sai sau:
có bạn hiểu nhầm là 2 mũ 3 là lấy 2 nhân với 3 nên
=> bạn ấy có kết quả là 6
bạn lưu ý đấy
gọi số trừ là a , số bị trừ là b ( a>b )
hiệu 2 số là 3,56 => a-b = 3,56 (1)
nếu gấp số trừ lên 3 lần thì đc số mới lớn hơn số bị trừ là 7,2 => 3a - b = 7,2 (2)
từ (1) và (2) ta được hpt .... a-b = 3,56 và 3a-b=7,2
=> a= 1,82 , b = -1,74(tm)
vậy 2 số cần tìm là 1,82 và -1,74
(ĐK : x>= 3/2)
nhận 2 vế của pt với \(\sqrt{2}tađược\):
\(\sqrt{2.\left(2x-2\right)}-\sqrt{2.\left(6x-9\right)}=\sqrt{2}.\left(16x^2-48x+35\right)\)
<=> \(\left(\sqrt{4x-4}-\sqrt{3}\right)-\left(\sqrt{12x-18}-\sqrt{3}\right)=\sqrt{2}.\left(4x-7\right).\left(4x-5\right)\)
<=> \(\left(\frac{4x-7}{\sqrt{4x-4}+\sqrt{3}}\right)-\left(\frac{12x-21}{\sqrt{12x-18}+\sqrt{3}}\right)=\sqrt{2}.\left(4x-7\right).\left(4x-5\right)\)
<=>\(\left(4x-7\right).\left(\frac{1}{\sqrt{4x-4}+\sqrt{3}}-\frac{3}{\sqrt{12x-18}+\sqrt{3}}-\sqrt{2}.\left(4x-5\right)\right)=0\)
<=> (4x-7) .g(x) = 0
<=> x = 7/4(tm) hoặc g(x)= 0
+) với g(x) = 0 <=> \(\left(\frac{1}{\sqrt{4x-4}+\sqrt{3}}-\frac{3}{\sqrt{12x-18}+\sqrt{3}}-\sqrt{2}.\left(4x-5\right)\right)=0\) <=> \(\left(\frac{1}{\sqrt{4x-4}+\sqrt{3}}-\frac{3}{\sqrt{12x-18}+\sqrt{3}}-\sqrt{2}.\left(4x-6\right)-\sqrt{2}\right)=0\)
<=>\(\left(\frac{1-\sqrt{2}.\sqrt{4x-4}-\sqrt{2}.\sqrt{3}}{\sqrt{4x-4}+\sqrt{3}}-\frac{3}{\sqrt{12x-18}+\sqrt{3}}-\sqrt{2}.\left(4x-6\right)\right)=0\) vô nghiện vì VT < 0 với mọi x >= 2/3 ...
VẬY X = 7/4 ... nếu đúng thì like nhé !!!
y' = 3x^2 - 6mx = 3x(x-2m)
với y'=0 <=> x=0 hoặc x-2m= 0
để hàm có 2 cực trị <=> x = 2m (m#0)
chứng tỏ với mọi m #0 thì hàm luôn có 2 điểm cực trị
giả sử 2 điểm cực trị là A ( 0 ; 3m^3 ) ; B ( 2m ; 0 )
=> OA = 3m^3 ; OB = 2m
diện tích OAB = 48 <=> 1/2 . OA.OB = 48 <=> 1/2. 3m^3 . 2m = 48 <=> 3m^3 = 48 <=> m =\(\sqrt[3]{16}\) (TM )
vậy ....
gọi số lập được có dạng abcd ( a#0)
a có 6 cách chọn
b có 5 cách chọn
c có 4 cách chọn
d có 3 cách chọn
=> có 6.5.4.3 = 360 số thỏa mãn