HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
P = x2 - 2xy + 6y2 - 12x + 3y + 45
= x2 + y2 + 62 - 2xy - 12x + 12y + 5y2 - 9y + 4,05 + 4,95
= (y + 6 - x)2 + 5(y - 0,9)2 + 4,95 \(\ge\) 4,95
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}y+6-x=0\\y-0,9=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=6,9\\y=0,9\end{matrix}\right.\)
Áp dụng BĐT AM - GM, ta có:
\(2\ge a^2+b^2\ge2ab\)
\(\Leftrightarrow ab\le1\)
\(A=a\sqrt{3b\left(a+2b\right)}+b\sqrt{3a\left(b+2a\right)}\)
\(\le\dfrac{a\left(3b+a+2b\right)}{2}+\dfrac{b\left(3a+b+2a\right)}{2}\)
\(=\dfrac{a\left(5b+a\right)+b\left(5a+b\right)}{2}\)
\(=\dfrac{a^2+10ab+b^2}{2}\)
\(\le\dfrac{2+10}{2}=6\)
Dấu "=" xảy ra khi a = b = 1
P/s: hình hơi khó nhìn nhé (^~^) tại bài này lúc đầu là t làm cho đề khác :)) nhưng cx tương tự như đề này ~~~
D và E của đề lần lượt sẽ là M và N trong hình. Có AD và AE rồi dễ dàng tìm được BD và BD (ptg trong tam giác vuông BAD và BAE)
\(M=\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right)\div\dfrac{\sqrt{x}-1}{2}\)
(ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\))
\(=\left[\dfrac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{1}{\sqrt{x}-1}\right]\times\dfrac{2}{\sqrt{x}-1}\)
\(=\dfrac{\left(x+2\right)+\sqrt{x}\left(\sqrt{x}-1\right)-\left(x+\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\times\dfrac{2}{\sqrt{x}-1}\)
\(=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)^2\left(x+\sqrt{x}+1\right)}\)
\(=\dfrac{1}{x+\sqrt{x}+1}\)
\(M=\dfrac{1}{\left(\sqrt{x}+\dfrac{1}{2}\right)^2+\dfrac{3}{4}}\le1\)
Dấu "=" xảy ra khi x = 0
Bài 6: Tương tự: https://hoc24.vn/topic/ki-thuat-am-gm-nguoc-dau.5861/
Áp dụng BĐT Cauchy Shwarz, ta có:
\(\left(1+1+1\right)\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\)
\(\Leftrightarrow x^2+y^2+z^2\ge\dfrac{\left(x+y+z\right)^2}{3}=\dfrac{1}{3}\)
\(\left(1+1+1\right)\left(x^4+y^4+z^4\right)\ge\left(x^2+y^2+z^2\right)^2\)
\(\Leftrightarrow x^4+y^4+z^4\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{3}\ge\dfrac{1}{27}\left(\text{đ}pcm\right)\)
Dấu "=" xảy ra khi \(x=y=z=\dfrac{1}{3}\)
\(M=\sqrt{4+\sqrt{7}}+\sqrt{4-\sqrt{7}}\)
\(\Rightarrow\sqrt{2}M=\sqrt{8+2\sqrt{7}}+\sqrt{8-2\sqrt{7}}\)
\(=\sqrt{\left(\sqrt{7}+1\right)^2}+\sqrt{\left(\sqrt{7}-1\right)^2}\)
\(=\sqrt{7}+1+\sqrt{7}-1\)
\(=2\sqrt{7}\)
\(\Rightarrow M=\sqrt{14}\)
\(\sqrt{16x+16}-\sqrt{9x+9}+\sqrt{4x+4}+\sqrt{x+1}=16\)
\(\Leftrightarrow4\sqrt{x+1}-3\sqrt{x+1}+2\sqrt{x+1}+\sqrt{x+1}=16\)
\(\Leftrightarrow4\sqrt{x+1}=16\)
\(\Leftrightarrow\sqrt{x+1}=4\)
<=> x + 1 = 16
<=> x = 15 (nhận)
~ ~ ~
\(\sqrt{4x+20}-3\sqrt{5+x}+\dfrac{4}{3}\sqrt{9x+45}=6\)
\(\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=6\)
\(\Leftrightarrow3\sqrt{x+5}=6\)
\(\Leftrightarrow\sqrt{x+5}=2\)
<=> x + 5 = 4
<=> x = - 1 (nhận)
\(M=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)
\(=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}}\)
\(=\sqrt{\sqrt{5}-\sqrt{3-2\sqrt{5}+3}}\)
\(=\sqrt{\sqrt{5}-\sqrt{\left(\sqrt{5}-1\right)^2}}\)
\(=\sqrt{\sqrt{5}-\sqrt{5}+1}\)
= 1