HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
A=(n-1)(n+1).\(n^2\).\(\left(n^2+1\right)\)
A=(n-1)(n+1).n.n.\(\left(n^2+1\right)\)
Mà n-1;n;n+1 là 3 số tự nhiên liên tiếp. Mà tích của 3 số tự nhiên liên tiếp luôn chia hết cho 3.Suy ra: (n-1)(n+1).n chia hết cho 3
Suy ra: (n-1)(n+1).n.n.(\(n^2+1\)) chia hết cho 3
Suy ra (n-1)(n+1).\(n^2\).\(\left(n^2+1\right)\) Chia hết cho 3.(đpcm)
Ta thấy: \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+......+\frac{1}{50^2}\)<\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+......+\frac{1}{49.50}\)
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.....+\frac{1}{50^2}\)<\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{49}-\frac{1}{50}\)
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.....+\frac{1}{50^2}\)<\(1-\frac{1}{50}\)
Suy ra:
A=\(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.....+\frac{1}{50^2}\)<\(\frac{1}{1^2}+\left(1-\frac{1}{50}\right)\)
A<1+1-\(\frac{1}{50}\)
A<2-\(\frac{1}{50}\)<2
Vậy A<2(đpcm)
b,c
A;B;C
18 hình
thì bạn làm cách tương tự là ra thôi