Đặt \(\overrightarrow{AB}=\overrightarrow{b}\), \(\overrightarrow{AC}=\overrightarrow{c}\)
Do B. M, C thẳng hàng theo thứ tự, nên tồn tại n, p > 0 sao cho \(\overrightarrow{AM}=n\overrightarrow{c}+p\overrightarrow{b}\) với \(n+p=1\)
Từ đó, do tứ giác ANMP là hình bình hành, nên \(\overrightarrow{AP}=p\overrightarrow{b}\), \(\overrightarrow{AN}=n\overrightarrow{c}\)
Do B, O, N thẳng hàng và C, O, P thẳng hàng nên
\(\overrightarrow{AO}=x\overrightarrow{b}+ny\overrightarrow{c}=z\overrightarrow{c}+pt\overrightarrow{b}\)
trong đó \(x+y=1=z+t\)
Từ đó, do hai vectơ \(\overrightarrow{b},\overrightarrow{c}\) không cùng phương nên \(x=\frac{p\left(1-n\right)}{1-np}\) và \(y=\frac{1-p}{1-np}\)
Do đó :
\(\overrightarrow{AO}=\frac{p\left(1-n\right)}{1-np}.\overrightarrow{b}+\frac{n\left(1-p\right)}{1-np}.\overrightarrow{c}\)
Suy ra :
\(\left(1-np\right).\overrightarrow{OM}=\left(1-np\right)\left(\overrightarrow{AM}-\overrightarrow{AO}\right)=np\left(1-p\right)\overrightarrow{b}+np\left(1-n\right)\overrightarrow{c}\)
\(\Rightarrow\frac{1-np}{np}.\overrightarrow{OM}=\left(\overrightarrow{b}+\overrightarrow{c}\right)-\left(n\overrightarrow{c}+p\overrightarrow{b}\right)\)
Hay
\(\overrightarrow{AM}=np\overrightarrow{AD}+\left(1-np\right)\overrightarrow{AO}\)
Trong đó D là điểm thỏa mãn \(\overrightarrow{AD}=\overrightarrow{b}+\overrightarrow{c}\) Từ đó, đường thẳng OM luôn đi qua D cố định (D là đỉnh thứ tư của hình bình hàng ABDC)