a) \(A=\left(2x-4\right)^2+6\)
Vì \(\left(2x-4\right)^2\ge0\Rightarrow\left(2x-4\right)^2+6\ge0\)
Dấu "=" xảy ra \(\Leftrightarrow\left(2x-4\right)^2=0\Leftrightarrow x=2\)
Vậy Min A = 6 \(\Leftrightarrow x=2\)
b) \(B=x^2-4x+10\)
\(B=x^2-4x+4+6\)
\(B=\left(x-2\right)^2+6\)
Vì \(\left(x-2\right)^2\ge0\Rightarrow\left(x-2\right)^2+6\ge6\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x-2\right)^2=0\Leftrightarrow x=2\)
Vậy Min B = 6 \(\Leftrightarrow x=2\)
c) \(C=9x^2-6x+15\)
\(C=9x^2-6x+1+14\)
\(C=\left(3x-1\right)^2+14\)
Vì \(\left(3x-1\right)^2\ge0\Rightarrow\left(3x-1\right)^2+14\ge14\)
Dấu "=" xảy ra \(\Leftrightarrow\left(3x-1\right)^2=0\Leftrightarrow x=\dfrac{1}{3}\)
Vậy Min C = 14 \(\Leftrightarrow x=\dfrac{1}{3}\)
d) \(D=x^2+y^2+4x-8y+30\)
\(D=x^2+4x+4+y^2-8y+16+10\)
\(D=\left(x+2\right)^2+\left(y-4\right)^2+10\)
Vì \(\left(x+2\right)^2\ge0;\left(y-4\right)^2\ge0\Rightarrow\left(x+2\right)^2+\left(y-4\right)^2\ge0\Rightarrow\left(x+2\right)^2+\left(y-4\right)^2+10\ge10\)Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}\left(x+2\right)^2=0\\\left(y-4\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=4\end{matrix}\right.\)
Vậy Min D = 10 \(\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=4\end{matrix}\right.\)