a, cho x, y là 2 số thoả mãn (2x - y + 7)\(^{2022}\) + |x - 1|\(^{2023}\) ≤ 0. Tính giá trị của biểu thức: P = x\(^{2023}\) + (y - 10)\(^{2023}\)
b, Tìm số tự nhiên x, y biết 25 - y\(^2\) = 8(x = 2023)\(^2\)
c, Tìm giá trị nhỏ nhất của biểu thức: P = (|x - 3| + 2)\(^2\) + |y + 3| + 2019
d, Tìm cặp số nguyên x, y biết: (2 - x)(x + 1) = |y + 1|
cho tam giác ABC (AB<AC), tia phân giác AD (D thuộc BC). Vẽ BE vuông AD (E thuộc AC) và H là giao điểm của AD và BE.
a, chứng minh ΔABH = ΔAEH
b, chứng minh tam giác BDE là tam giác cân
c, Trên tia đối của DE lấy K sao cho DC = DK. Chứng minh góc KBD = góc CED và A, B, K thẳng hàng
d, Chứng minh BE // KC
Cho tam giác ABC vuông tại A. Kẻ BD là phân giác của ABC (D ϵ AC). Trên đoạn BC lấy điểm E sao cho AB = BE
a, Chứng minh AD = DE
b, Trên tia đối của tia AB lấy điểm F sao cho AF = EC. Chứng minh BD vuông FC
c, Chứng minh AE // FC
d, Chứng minh ba điểm D, E, F thẳng hàng
Cho tam giác ABC vuông tại A. Kẻ BD là phân giác của ABC (D ϵ AC). Trên đoạn BC lấy điểm E sao cho AB = BE
a, Chứng minh AD = DE
b, Trên tia đối của tia AB lấy điểm F sao cho AF = EC. Chứng minh BD vuông FC
c, Chứng minh AF // FC
d, Chứng minh ba điểm D, E, F thẳng hàng
a, Chứng minh rằng MP = MQ và AP = AQ.
b, Đường thẳng PQ có vuông góc với AM không? Vì sao?
VẼ HÌNH GIÚP MÌNH NHA. CẢM ƠN Ạ
Cho tam giác ABC vuông tại A. Kẻ BD là phân giác của ABC (D ϵ AC). Trên đoạn BC lấy điểm E sao cho AB = BE
a, Chứng minh AD = DE
b, Trên tia đối của tia AB lấy điểm F sao cho AF = EC. Chứng minh BD vuông FC
c, Chứng minh À // FC
d, Chứng minh ba điểm D, E, F thẳng hàng
VẼ HÌNH GIÚP MÌNH NHA. CẢM ƠN Ạ
Cho tam giác ABC cân tại A. Trên canh AB và AC lần lượt lấy các điểm M và N sao cho BM = CN
a, Chứng minh tam giác BMC = tam giác CNB
b, Chứng minh góc ABN = góc ACM
c, Chứng minh MN // BC
d, Gọi O là giao điểm của BN và CM. I là trung điểm của BC. Chứng minh ba điểm A, O, I thẳng hàng.
VẼ HÌNH GIÚP MÌNH NHA. CẢM ƠN Ạ
Cho tam giác ABC. M là trung điểm của BC.
a, Chứng minh tam giác ABM = tam giác ACM
b, Chứng minh AM là phân giác của góc BAC và AM vuông BC
c, Lấy D là 1 điểm bất kỳ trên AM. Chứng minh DB = DC
d, Lấy điểm H thuộc AB, K thuộc AC sao cho BH = CK. Chứng minh HK // BC