HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
Đặt \(x^2=a\left(a\ge0\right)\)khi đó phương trình tương đương với
\(a^2-5a+m=0\)(*)
Để phương trình có 4 nghiệm phân biệt thì phương trình (*) phải có 2 nghiệm phân biệt dương
\(< =>\left\{{}\begin{matrix}\Delta>0\\x_1.x_2>0\\x_1+x_2>0\end{matrix}\right.< =>\left\{{}\begin{matrix}25-4m>0\\m>0\\5>0\end{matrix}\right.\)
\(< =>\dfrac{25}{4}>m>0\)
khác 4 chứ nhỉ =))
à k phải đâu , mọi số nguyên tố là được rồi nhé
khác 4 nhé , mình nhầm
a , Khi x = 25 thì \(P=\dfrac{2\sqrt{25}+1}{\sqrt{25}}=\dfrac{10+1}{5}=\dfrac{11}{5}\)
b, Ta có : \(Q=\dfrac{x-3\sqrt{x}+4}{x-2\sqrt{x}}-\dfrac{1}{\sqrt{x}-2}=\dfrac{x-3\sqrt{x}+4}{\sqrt{x}\left(\sqrt{x}-2\right)}-\dfrac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(=\dfrac{x-3\sqrt{x}+4-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}=\dfrac{\left(\sqrt{x}-2\right)^2}{\sqrt{x}\left(\sqrt{x}-2\right)}=\dfrac{\sqrt{x}-2}{\sqrt{x}}\)
c, Ta có : \(M=\dfrac{Q}{P}=\dfrac{\dfrac{\sqrt{x}-2}{\sqrt{x}}}{\dfrac{2\sqrt{x}+1}{\sqrt{x}}}=\dfrac{\sqrt{x}-2}{2\sqrt{x}+1}\)
Do \(|M|\ge M\) nên x thỏa mãn mọi số nguyên tố khác 2