1) \(x^2+7x-8=x^2-x+8x-8\)
\(=\left(x^2-x\right)+\left(8x-8\right)=x\left(x-1\right)+8\left(x-1\right)\)
\(=\left(x+8\right).\left(x-1\right)\)
2) \(x^2-6x-7=x^2+x-7x-7\)
\(=\left(x^2+x\right)-\left(7x-7\right)=x\left(x+1\right)-7\left(x+1\right)\)
\(=\left(x-7\right).\left(x+1\right)\)
3) \(-x^2+5x-4=-x^2+x+4x-4\)
\(=\left(-x^2+x\right)+\left(4x-4\right)=-x\left(x-1\right)+4\left(x-1\right)\)
\(=\left(-x+4\right).\left(x-1\right)\)
4) \(-x^2-8x+9=-x^2+x-9x+9\)
\(=\left(-x^2+x\right)-\left(9x+9\right)=-x\left(x-1\right)-9\left(x-1\right)\)
\(=\left(-x-9\right)\left(x-1\right)\)
5) \(4x^2+3x-7=4x^2-4x+7x-7\)
\(=\left(4x^2-4x\right)+\left(7x-7\right)=4x\left(x-1\right)+7\left(x-1\right)\)
\(=\left(4x+7\right)\left(x-1\right)\)
6) \(9x^2-x-8=9x^2-9x+8x-8\)
\(=\left(9x^2-9x\right)+\left(8x-8\right)=9x\left(x-1\right)+8\left(x-1\right)\)
\(=\left(9x+8\right)\left(x-1\right)\)
7) \(-16x^2+11x+5=-16x^2+16x-5x+5\)
\(=\left(-16x^2+16x\right)-\left(5x+5\right)=-16x\left(x-1\right)-5\left(x-1\right)\)
\(=\left(-16x-5\right)\left(x-1\right)\)
8) \(-4x^2-7x+11=-4x^2+4x-11x+11\)
\(=\left(-4x^2+4x\right)-\left(11x+11\right)=-4x\left(x-1\right)-11\left(x-1\right)\)
\(=\left(-4x-11\right)\left(x-1\right)\)
9) \(13x^2+7x-6=13x^2+13x-6x-6\)
\(=\left(13x^2+13\right)-\left(6x-6\right)=13x\left(x+1\right)-6\left(x+1\right)\)
\(=\left(13x-6\right)\left(x+1\right)\)