HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
1Tính đạo hàm cấp 1 của các hàm số sau:
a) f(x) = (1- x^2) ^2024
b) f(x) = In^2 (1 + e^x)
c) f(x) = x^2 . sin(2x)
Xác định hàm số bậc nhất y = ax + b trong các trường hợp
a) a = -2 và đồ thị cắt trục hoành tại điểm có hoành độ 2,5
b) a = 3 và đồ thị cắt trục tung tại điểm có tung độ -\(\dfrac{4}{3}\)
c) đồ thị hàm số song song với đường thẳng y = -4x + 3 và đi qua điểm A(-1;8)
d) đồ thị hàm số đi qua điểm B (2;3) và cắt trục tung tại điểm có tung độ là 4
e) đồ thị hàm số cắt trục tung tại điểm có tung độ là -2 và cắt đồ thị hàm số y = -4x +3 tại điểm có hoành độ là 1
f) đồ thị hàm số có hệ số góc là 2 và cắt đồ thị hàm số y = -4x + 3 tại điểm có tung độ là -3
Cho hàm số bậc nhất y = (2 - 5m)x + m - 3 có đồ thị là (d)
a) với những giá trị nào của m thì đường thẳng d đi qua gốc tọa độ?
b) với những giá trị nào của m thì đường thẳng d tạo với tia Ox một góc nhọn? Một góc tù?
c) tìm giá trị của m để đường thẳng d cắt trục tung tại điểm có tung độ bằng \(\dfrac{2}{3}\)
d) tìm m để đường thẳng d cắt trục hoành tại điểm có hoành độ bằng \(\dfrac{1}{2}\)
a) tìm giá trị của a để hai đường thẳng y = (a -1)x + 5 và y = (3 - a)x + 2 song song với nhau
b) với điều kiện nào của k và m thì đường thẳng trùng nhau
y = kx + (m - 2) và y = ( 5 - k)x + (4 - m)
a) với những giá trị nào của m thì hàm số y = (m + 6)x - 7 đồng biến?
b) với những giá trị nào của k thì hàm số y = (-k + 9)x + 100 nghịch biến?
c) với những giá trị nào của m thì đồ thị của hàm số y = 12x + (5 + m) và y = -3x + (3 - m) cắt nhau tại một điểm trên trục tung
Giải phương trình
\(\dfrac{\sqrt{2x-3}}{\sqrt{x-1}}=2\)
\(x+\sqrt{2x+15}=0\)
Chứng minh đẳng thức
\(\dfrac{\sqrt{a}-2}{a+2\sqrt{a}}+\dfrac{8}{a-4}=\dfrac{\sqrt{a}+2}{a-2\sqrt{a}}\) (với a > 0 ; a \(\ne\)4)
Thực hiện phép tính
a) \(\dfrac{3}{\sqrt{2}}+\sqrt{\dfrac{1}{2}}-2\sqrt{18}+\sqrt{\left(1-\sqrt{2}\right)^2}\)
b) \(\dfrac{1}{\sqrt{3}}+\dfrac{1}{3\sqrt{2}}+\dfrac{1}{\sqrt{3}}\dfrac{\sqrt{3}-\sqrt{2}}{2\sqrt{3}}\)
c) \(\sqrt[3]{\dfrac{3}{4}}.\sqrt[3]{\dfrac{9}{16}}\)
d) \(\dfrac{\sqrt[3]{54}}{\sqrt[3]{-2}}\)
e) \(\sqrt[3]{5\sqrt{2}+7}-\sqrt[3]{5\sqrt{2}+7}\)
Tìm x để biểu thức có nghĩa
\(\sqrt{\dfrac{-5}{x^2+6}}\)