`#\text{nn}`
`1,`
`1)`
\(\left(3x-1\right)^2\\
=\left(3x\right)^2-2\cdot3x\cdot1+1^2\\
=9x^2-6x+1\)
`2)`
\(\left(2y+3x\right)^2\\
=\left(2y\right)^2+2\cdot2y\cdot3x+\left(3x\right)^2\\
=4y^2+12xy+9x^2\)
`3)`
\(\left(4x-5\right)^2\\
=16x^2-40x+25\)
`4)`
\(4y^2-9\\
=\left(2y\right)^2-3^2\\
=\left(2y-3\right)\left(2y+3\right)\)
`5)`
\(64x^2-25y^2\\
=\left(8x^2\right)-\left(5y\right)^2\\
=\left(8x-5y\right)\left(8x+5y\right)\)
`6)`
\(\left(2x^3-1\right)^2\\
=\left(2x^3\right)^2-2\cdot2x^3\cdot1+1^2\\
=8x^6-4x^3+1\)
`7)`
\(\left(5xy+7\right)^2\\
=\left(5xy\right)^2+2\cdot5xy\cdot7+7^2\\
=25x^2y^2+70xy+49\)
`8)`
\(\left(3x+8ay^2\right)^2\\
=\left(3x\right)^2+2\cdot3x\cdot8ay^2+\left(8ay^2\right)^2\\
=9x^2+48xay^2+64a^2y^4\)
`9)`
\(\left(a+b\right)^2-\left(a-b\right)^2\\
=\left(a+b-a+b\right)\left(a+b+a-b\right)\\
=2b\cdot2a\\
=4ab\)
`10)`
\(84^2-16^2\\
=\left(84-16\right)\left(84+16\right)\\
=68\cdot100\\
=6800\)
`11)`
\(\left(3xy-z\right)\left(3xy+z\right)\\
=\left(3xy\right)^2-z^2\\
=9x^2y^2-z^2\)
`12)`
\(\left(x^2+5\right)\left(5-x^2\right)\\
=\left(5+x^2\right)\left(5-x^2\right)\\
=5^2-\left(x^2\right)^2\\
=25-x^4\)