Bài 6. Cấp số cộng

Bài 2.9 (SGK Kết nối tri thức với cuộc sống trang 51)

Hướng dẫn giải

a) \({u_1} = 8;\;\;\;\;{u_2} = 13;\;\;\;\;\;{u_3} = 18;\;\;\;\;\;{u_4} = 23;\;\;\;\;\;{u_5} = 28\).

Ta có: \({u_n} - {u_{n - 1}} = 3 + 5n - \left[ {3 + 5\left( {n - 1} \right)} \right] = 5,\;\forall n \ge 2\).

Vậy dãy số \(\left( {{u_n}} \right)\) là cấp số cộng với \({u_1} = 8\) và công sai \(d = 5\).

Số hạng tổng quát: \({u_n} = 8 + 5\left( {n - 1} \right)\).

b) \({u_1} = 2;\;\;\;\;{u_2} = 8;\;\;\;\;{u_3} = 14;\;\;\;\;\;{u_4} = 20;\;\;\;\;\;{u_5} = 26\).

Ta có: \({u_n} - {u_{n - 1}} = 6n - 4 - \left[ {6\left( {n - 1} \right) - 4} \right] = 6,\;\forall n \ge 2\).

Vậy dãy số \(\left( {{u_n}} \right)\) là cấp số cộng với \({u_1} = 2\) và công sai \(d = 6\).

Số hạng tổng quát: \({u_n} = 2 + 6\left( {n - 1} \right)\).

c) \({u_1} = 2;\;\;\;\;{u_2} = 4;\;\;\;\;\;{u_3} = 7;\;\;\;\;\;\;{u_4} = 11;\;\;\;\;\;\;\;{u_5} = 16\)

Ta có: \({u_n} - {u_{n - 1}} = n,\;\) n biến động.

Suy ra đây không phải là cấp số cộng.

d) \({u_1} = 2;\;\;\;\;{u_2} = 5;\;\;\;\;\;\;{u_3} = 8;\;\;\;\;\;\;{u_4} = 11;\;\;\;\;\;\;\;{u_5} = 14\)

Ta có: \({u_n} - {u_{n - 1}} = 3\).

Vậy dãy số \(\left( {{u_n}} \right)\) là cấp số cộng với \({u_1} = 2\) và công sai \(d = 3\).

Số hạng tổng quát: \({u_n} = 2 + 3\left( {n - 1} \right),\;\forall n \ge 2\).

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Bài 2.10 (SGK Kết nối tri thức với cuộc sống trang 51)

Hướng dẫn giải

Số hạng tổng quát của cấp số cộng: \({u_n} = \left( {n - 1} \right)d\)

Ta có:

\[\left\{ \begin{array}{l}{u_5} = {u_1} + 4d = 18\\{u_{12}} = {u_1} + 11d = 32\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1} = 10\\d = 2\end{array} \right.\]

\( \Rightarrow {u_n} = 10 + 2\left( {n - 1} \right) = 2n + 8\).

Số hạng thứ 50: \({u_{50}} = 2.50 + 8 = 108\)

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Luyện tập 2 (SGK Kết nối tri thức với cuộc sống trang 49)

Hướng dẫn giải

Ta có: \({u_n} - {u_{n - 1}} = \left( {4n - 3} \right) - \left[ {4\left( {n - 1} \right) - 3} \right] = 4,\;\forall n \ge 2\).

Vậy \(\left( {{u_n}} \right)\) là một cấp số cộng với số hạng đầu \({u_1} = 1\) và công sai \(d = 4\)

Số hạng tổng quát \({u_n} = 1 + 4\left( {n - 1} \right)\).

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Bài 2.8 (SGK Kết nối tri thức với cuộc sống trang 51)

Hướng dẫn giải

a) Cấp số cộng có: \({u_1} = 4,\) công sai \(d = 5\)

Số hạng tổng quát của dãy số là: \({u_n} = 4 + 5\left( {n - 1} \right) = 5n- 1\)

Số hạng thứ 5: \({u_5} = 5.5- 1 = 24\)

Số hạng thứ 100: \({u_{100}} = 5.100- 1 = 499\)

b) Cấp số cộng có: \({u_1} = 1,\) công sai \(d =  - 2\)

Số hạng tổng quát của dãy số là: \({u_n} = 1 + \left( { - 2} \right)\left( {n - 1} \right) = -2n+3\)

Số hạng thứ 5: \({u_5} = (-2).5+3 =  - 7\)

Số hạng thứ 100: \({u_{100}} = (-2).100+3 =  - 197\)

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Hoạt động 3 (SGK Kết nối tri thức với cuộc sống trang 50)

Hướng dẫn giải

a) \({u_2} = {u_1} + d\)

\({u_3} = {u_1} + 2d\)

\({u_{n - 1}} = {u_1} + \left( {n - 2} \right)d\)

\({u_n} = {u_1} + \left( {n - 1} \right)d\)

\({S_n} = {u_1} + {u_1} + 2d +  \ldots  + {u_1} + \left( {n - 2} \right)d + {u_1} + \left( {n - 1} \right)d\)

b) \({S_n} = {u_n} + {u_{n - 1}} +  \ldots  + {u_2} + {u_1} = {u_1} + \left( {n - 1} \right)d + {u_1} + \left( {n - 2} \right)d +  \ldots  + {u_1} + d + {u_1}\)

c) \(2{S_n} = \left( {{u_1} + {u_1} + d +  \ldots  + {u_1} + \left( {n - 1} \right)d} \right) + \left( {{u_1} + \left( {n - 1} \right)d + {u_1} + \left( {n - 2} \right)d +  \ldots  + {u_1}} \right)\).

\( \Rightarrow 2{S_n} = n.\left( {2{u_1} + \left( {n - 1} \right)d} \right)\)

\( \Rightarrow {S_n} = \frac{n}{2}\left( {2{u_1} + \left( {n - 1} \right)d} \right)\)

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Hoạt động 2 (SGK Kết nối tri thức với cuộc sống trang 49)

Hướng dẫn giải

a) Ta có: \({u_2} = {u_1} + d\)

\({u_3} = {u_2} + d = {u_1} + 2d\)

\({u_4} = {u_3} + d = {u_1} + 3d\)

\({u_5} = {u_4} + d = {u_1} + 4d\)

b) Công thức tính số hạng tổng quát \({u_n}\):

\({u_n} = {u_1} + \left( {n - 1} \right)d\).

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Câu hỏi (SGK Kết nối tri thức với cuộc sống trang 48,49)

Hướng dẫn giải

Gọi dãy a, a, a, ... là \(\left( {{u_n}} \right)\).

Ta có: \({u_n} - {u_{n - 1}} = a - a = 0,\;\forall n \ge 2\).

Công thức biểu diễn số hạng \({u_n}\) theo số hạng \({u_{n - 1}}\) là: \({u_n} = {u_{n - 1}} + 0\;\left( {n \ge 2} \right)\).

Như vậy, dãy số không đổi a, a, a, ... là một cấp số cộng với công sai d = 0.

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Hoạt động 1 (SGK Kết nối tri thức với cuộc sống trang 48,49)

Hướng dẫn giải

a) Năm số hạng đầu của dãy số: 1; 3; 5; 7; 9.

b) Công thức biểu diễn số hạng \({u_n}\) theo số hạng \({u_{n - 1}}\) là: \({u_n} = {u_{n - 1}} + 2\;\left( {n \ge 2} \right)\).

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Luyện tập 1 (SGK Kết nối tri thức với cuộc sống trang 48,49)

Hướng dẫn giải

Ta có: \({u_n} - {u_{n - 1}} = \left( { - 2n + 3} \right) - \left[ { - 2\left( {n - 1} \right) + 3} \right] =  - 2,\;\forall n \ge 2\).

Vậy \({u_n} =  - 2n + 3\) là một cấp số cộng với \({u_1} = 1\) và công sai \(d =  - 2\).

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Vận dụng 1 (SGK Kết nối tri thức với cuộc sống trang 50)

Hướng dẫn giải

Số tiền lương anh Nam nhận được sau 10 lập thành cấp số cộng với:

 Số hạng đầu \({u_1} = 100\) và công sai \(d = 20\)

Tổng lương anh Nam nhận được sau 10 năm là:

\({S_n} = \frac{n}{2}\left[ {2{u_1} + \left( {n - 1} \right)d} \right] = \frac{{10}}{2}\left[ {2.100 + \left( {10 - 1} \right).20} \right] = 1900\) (triệu đồng)

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)