Cho dãy số \(\left( {{u_n}} \right)\) gồm tất cả các số tự nhiên lẻ, xếp theo thứ tự tăng dần
a) Viết năm số hạng đầu của dãy số.
b) Dự đoán công thức biểu diễn số hạng \({u_n}\) theo số hạng \({u_{n - 1}}\).
Cho dãy số \(\left( {{u_n}} \right)\) gồm tất cả các số tự nhiên lẻ, xếp theo thứ tự tăng dần
a) Viết năm số hạng đầu của dãy số.
b) Dự đoán công thức biểu diễn số hạng \({u_n}\) theo số hạng \({u_{n - 1}}\).
Dãy số không đổi a, a, a, ... có phải là một cấp số cộng không?
Thảo luận (1)Hướng dẫn giảiGọi dãy a, a, a, ... là \(\left( {{u_n}} \right)\).
Ta có: \({u_n} - {u_{n - 1}} = a - a = 0,\;\forall n \ge 2\).
Công thức biểu diễn số hạng \({u_n}\) theo số hạng \({u_{n - 1}}\) là: \({u_n} = {u_{n - 1}} + 0\;\left( {n \ge 2} \right)\).
Như vậy, dãy số không đổi a, a, a, ... là một cấp số cộng với công sai d = 0.
(Trả lời bởi Hà Quang Minh)
Cho dãy số \(\left( {{u_n}} \right)\) với \({u_n} = - 2n + 3\). Chứng minh rằng \(\left( {{u_n}} \right)\) là một cấp số cộng. Xác định số hạng đầu và công sai của cấp số cộng này.
Thảo luận (1)Hướng dẫn giảiTa có: \({u_n} - {u_{n - 1}} = \left( { - 2n + 3} \right) - \left[ { - 2\left( {n - 1} \right) + 3} \right] = - 2,\;\forall n \ge 2\).
Vậy \({u_n} = - 2n + 3\) là một cấp số cộng với \({u_1} = 1\) và công sai \(d = - 2\).
(Trả lời bởi Hà Quang Minh)
Cho cấp số cộng \(\left( {{u_n}} \right)\) với số hạng đầu \({u_1}\) và công sai d
a) Tính các số hạng \({u_2},{u_3},{u_4},{u_5}\) theo \({u_1}\) và d.
b) Dự đoán công thức tính số hạng tổng quát \({u_n}\) theo \({u_1}\) và d.
Thảo luận (1)Hướng dẫn giảia) Ta có: \({u_2} = {u_1} + d\)
\({u_3} = {u_2} + d = {u_1} + 2d\)
\({u_4} = {u_3} + d = {u_1} + 3d\)
\({u_5} = {u_4} + d = {u_1} + 4d\)
b) Công thức tính số hạng tổng quát \({u_n}\):
\({u_n} = {u_1} + \left( {n - 1} \right)d\).
(Trả lời bởi Hà Quang Minh)
Cho dãy số \(\left( {{u_n}} \right)\) với \({u_n} = 4n - 3\). Chứng minh rằng \(\left( {{u_n}} \right)\) là một cấp số cộng. Xác định số hạng đầu \({u_1}\) và công sai d của cấp số cộng này. Từ đó viết số hạng tổng quát \({u_n}\) dưới dạng \({u_n} = {u_1} + \left( {n - 1} \right)d\)
Thảo luận (1)Hướng dẫn giảiTa có: \({u_n} - {u_{n - 1}} = \left( {4n - 3} \right) - \left[ {4\left( {n - 1} \right) - 3} \right] = 4,\;\forall n \ge 2\).
Vậy \(\left( {{u_n}} \right)\) là một cấp số cộng với số hạng đầu \({u_1} = 1\) và công sai \(d = 4\)
Số hạng tổng quát \({u_n} = 1 + 4\left( {n - 1} \right)\).
(Trả lời bởi Hà Quang Minh)
Cho cấp số cộng \(\left( {{u_n}} \right)\) với số hạng đầu \({u_1}\) và công sai d
Để tính tổng của n số hạng đầu
\({S_n} = {u_1} + {u_2} + \ldots + {u_{n - 1}} + {u_n}\)
Hãy lần lượt thực hiện các yêu cầu sau:
a) Biểu diễn mỗi số hạng trong tổng \({S_n}\) theo số hạng đầu \({u_n}\) và công sai d
b) Viết \({S_n}\) theo thứ tự ngược lại: \({S_n} = {u_n} + {u_{n - 1}} + \ldots + {u_2} + {u_1}\) và sử dụng kết quả ở phần a) để biểu diễn mỗi số hạng trong tổng này theo \({u_1}\) và d
c) Cộng từng vế hai đẳng thức nhận được ở a), b) để tính \({S_n}\)theo \({u_1}\) và d
Thảo luận (1)Hướng dẫn giảia) \({u_2} = {u_1} + d\)
\({u_3} = {u_1} + 2d\)
…
\({u_{n - 1}} = {u_1} + \left( {n - 2} \right)d\)
\({u_n} = {u_1} + \left( {n - 1} \right)d\)
\({S_n} = {u_1} + {u_1} + 2d + \ldots + {u_1} + \left( {n - 2} \right)d + {u_1} + \left( {n - 1} \right)d\)
b) \({S_n} = {u_n} + {u_{n - 1}} + \ldots + {u_2} + {u_1} = {u_1} + \left( {n - 1} \right)d + {u_1} + \left( {n - 2} \right)d + \ldots + {u_1} + d + {u_1}\)
c) \(2{S_n} = \left( {{u_1} + {u_1} + d + \ldots + {u_1} + \left( {n - 1} \right)d} \right) + \left( {{u_1} + \left( {n - 1} \right)d + {u_1} + \left( {n - 2} \right)d + \ldots + {u_1}} \right)\).
\( \Rightarrow 2{S_n} = n.\left( {2{u_1} + \left( {n - 1} \right)d} \right)\)
\( \Rightarrow {S_n} = \frac{n}{2}\left( {2{u_1} + \left( {n - 1} \right)d} \right)\)
(Trả lời bởi Hà Quang Minh)
Anh Nam được nhận vào làm việc ở một công ty về công nghệ với mức lương khởi điểm là 100 triệu đồng một năm. Công ty sẽ tăng thêm lương cho anh Nam mỗi năm là 20 triệu đồng. Tính tổng số tiền lương mà anh Nam nhận được sau 10 năm làm việc cho công ty đó.
Thảo luận (1)Hướng dẫn giảiSố tiền lương anh Nam nhận được sau 10 lập thành cấp số cộng với:
Số hạng đầu \({u_1} = 100\) và công sai \(d = 20\)
Tổng lương anh Nam nhận được sau 10 năm là:
\({S_n} = \frac{n}{2}\left[ {2{u_1} + \left( {n - 1} \right)d} \right] = \frac{{10}}{2}\left[ {2.100 + \left( {10 - 1} \right).20} \right] = 1900\) (triệu đồng)
(Trả lời bởi Hà Quang Minh)
Xác định công sai, số hạng thứ 5, số hạng tổng quát và số hạng thứ 100 của mỗi cấp số cộng sau:
a) 4, 9,14, 19,...;
b) 1, -1, -3, -5,...
Thảo luận (1)Hướng dẫn giảia) Cấp số cộng có: \({u_1} = 4,\) công sai \(d = 5\)
Số hạng tổng quát của dãy số là: \({u_n} = 4 + 5\left( {n - 1} \right) = 5n- 1\)
Số hạng thứ 5: \({u_5} = 5.5- 1 = 24\)
Số hạng thứ 100: \({u_{100}} = 5.100- 1 = 499\)
b) Cấp số cộng có: \({u_1} = 1,\) công sai \(d = - 2\)
Số hạng tổng quát của dãy số là: \({u_n} = 1 + \left( { - 2} \right)\left( {n - 1} \right) = -2n+3\)
Số hạng thứ 5: \({u_5} = (-2).5+3 = - 7\)
Số hạng thứ 100: \({u_{100}} = (-2).100+3 = - 197\)
(Trả lời bởi Hà Quang Minh)
Viết năm số hạng đầu của mỗi dãy số \(\left( {{u_n}} \right)\) sau và xét xem nó có phải là cấp số cộng không. Nếu dãy số đó là cấp số cộng, hãy tìm công sai d và viết số hạng tổng quát của nó dưới dạng \({u_n} = {u_1} + \left( {n - 1} \right)d\)
a) \({u_n} = 3 + 5n;\)
b) \({u_n} = 6n - 4\);
c) \({u_1} = 2,\;{u_n} = {u_{n - 1}} + n\);
d) \({u_1} = 2,\;{u_n} = {u_{n - 1}} + 3\).
Thảo luận (1)Hướng dẫn giảia) \({u_1} = 8;\;\;\;\;{u_2} = 13;\;\;\;\;\;{u_3} = 18;\;\;\;\;\;{u_4} = 23;\;\;\;\;\;{u_5} = 28\).
Ta có: \({u_n} - {u_{n - 1}} = 3 + 5n - \left[ {3 + 5\left( {n - 1} \right)} \right] = 5,\;\forall n \ge 2\).
Vậy dãy số \(\left( {{u_n}} \right)\) là cấp số cộng với \({u_1} = 8\) và công sai \(d = 5\).
Số hạng tổng quát: \({u_n} = 8 + 5\left( {n - 1} \right)\).
b) \({u_1} = 2;\;\;\;\;{u_2} = 8;\;\;\;\;{u_3} = 14;\;\;\;\;\;{u_4} = 20;\;\;\;\;\;{u_5} = 26\).
Ta có: \({u_n} - {u_{n - 1}} = 6n - 4 - \left[ {6\left( {n - 1} \right) - 4} \right] = 6,\;\forall n \ge 2\).
Vậy dãy số \(\left( {{u_n}} \right)\) là cấp số cộng với \({u_1} = 2\) và công sai \(d = 6\).
Số hạng tổng quát: \({u_n} = 2 + 6\left( {n - 1} \right)\).
c) \({u_1} = 2;\;\;\;\;{u_2} = 4;\;\;\;\;\;{u_3} = 7;\;\;\;\;\;\;{u_4} = 11;\;\;\;\;\;\;\;{u_5} = 16\)
Ta có: \({u_n} - {u_{n - 1}} = n,\;\) n biến động.
Suy ra đây không phải là cấp số cộng.
d) \({u_1} = 2;\;\;\;\;{u_2} = 5;\;\;\;\;\;\;{u_3} = 8;\;\;\;\;\;\;{u_4} = 11;\;\;\;\;\;\;\;{u_5} = 14\)
Ta có: \({u_n} - {u_{n - 1}} = 3\).
Vậy dãy số \(\left( {{u_n}} \right)\) là cấp số cộng với \({u_1} = 2\) và công sai \(d = 3\).
Số hạng tổng quát: \({u_n} = 2 + 3\left( {n - 1} \right),\;\forall n \ge 2\).
(Trả lời bởi Hà Quang Minh)
Một cấp số cộng có số hạng thứ 5 bằng 18 và số hạng thứ 12 bằng 32. Tìm số hạng thứ 50 của cấp số cộng này.
Thảo luận (1)Hướng dẫn giảiSố hạng tổng quát của cấp số cộng: \({u_n} = \left( {n - 1} \right)d\)
Ta có:
\[\left\{ \begin{array}{l}{u_5} = {u_1} + 4d = 18\\{u_{12}} = {u_1} + 11d = 32\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1} = 10\\d = 2\end{array} \right.\]
\( \Rightarrow {u_n} = 10 + 2\left( {n - 1} \right) = 2n + 8\).
Số hạng thứ 50: \({u_{50}} = 2.50 + 8 = 108\)
(Trả lời bởi Hà Quang Minh)