Bài 1. Giới hạn của dãy số

Hoạt động 1 (SGK Cánh Diều trang 59-61)

Hướng dẫn giải

a) Khi n ngày càng lớn thì các giá trị \({u_n}\) ngày càng giảm tiến dần về gần trục Ox.

b)

Kể từ số hạng \({u_{1001}}\) trở đi thì khoảng cách từ \({u_n}\) đến 0 nhỏ hơn 0,001

Kể từ số hạng \({u_{10001}}\) trở đi thì khoảng cách từ \({u_n}\) đến 0 nhỏ hơn 0,0001

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Luyện tập - Vận dụng 1 (SGK Cánh Diều trang 59-61)

Hướng dẫn giải

a) Vì \(\left| {{u_n}} \right| = \left| 0 \right| = 0 < 1\) nên theo định nghĩa dãy số có giới hạn 0 ta có \(\lim 0 = 0;\)

b) Vì \(0 < \left| {\frac{1}{{\sqrt n }}} \right| < 1\) nên theo định nghĩa dãy số có giới hạn 0 ta có \(\lim \frac{1}{{\sqrt n }} = 0.\)

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Luyện tập - Vận dụng 2 (SGK Cánh Diều trang 59-61)

Hướng dẫn giải

Vì \(\lim \left( {\frac{{ - 4n + 1}}{n} + 4} \right) = \lim \frac{1}{n} = 0\) nên \(\lim \frac{{ - 4n + 1}}{n} =  - 4.\)

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Luyện tập - Vận dụng 3 (SGK Cánh Diều trang 59-61)

Hướng dẫn giải

Vì \(\left| {\frac{e}{\pi }} \right| < 1\) nên theo định nghĩa dãy số có giới hạn 0 ta có \(\lim {\left( {\frac{e}{\pi }} \right)^n} = 0.\)

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Hoạt động 3 (SGK Cánh Diều trang 62)

Hướng dẫn giải

a) Vì \(\lim \left( {8 + \frac{1}{n} - 8} \right) = \lim \frac{1}{n} = 0\) nên \(\lim {u_n} = 8.\)

Vì \(\lim \left( {4 - \frac{2}{n} - 4} \right) = \lim \frac{{ - 2}}{n} = 0\) nên \(\lim {v_n} = 4.\)

b) \({u_n} + {v_n} = 8 + \frac{1}{n} + 4 - \frac{2}{n} = 12 - \frac{1}{n}\)

Vì \(\lim \left( {12 - \frac{1}{n} - 12} \right) = \lim \frac{{ - 1}}{n} = 0\) nên \(\lim \left( {{u_n} + {v_n}} \right) = 12.\)

Mà \(\lim {u_n} + \lim {v_n} = 12\)

Do đó \(\lim \left( {{u_n} + {v_n}} \right) = \lim {u_n} + \lim {v_n}.\)

c) \({u_n}.{v_n} = \left( {8 + \frac{1}{n}} \right).\left( {4 - \frac{2}{n}} \right) = 32 - \frac{{14}}{n} - \frac{2}{{{n^2}}}\)

Sử dụng kết quả của ý b ta có \(\lim \left( {32 - \frac{{14}}{n} - \frac{2}{{{n^2}}}} \right) = \lim 32 - \lim \frac{{14}}{n} - \lim \frac{2}{{{n^2}}} = 32\)

Mà \(\left( {\lim {u_n}} \right).\left( {\lim {v_n}} \right) = 32\)

Do đó \(\lim \left( {{u_n}.{v_n}} \right) = \left( {\lim {u_n}} \right).\left( {\lim {v_n}} \right).\)

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Luyện tập - Vận dụng 4 (SGK Cánh Diều trang 62)

Hướng dẫn giải

a) \(\lim \frac{{8{n^2} + n}}{{{n^2}}} = \lim \left( {8 + \frac{1}{n}} \right) = \lim 8 + \lim \frac{1}{n} = 8 + 0 = 8\)                     

b) \(\lim \frac{{\sqrt {4 + {n^2}} }}{n} = \lim \frac{{n\sqrt {\frac{4}{{{n^2}}} + 1} }}{n} = \sqrt {\lim \left( {\frac{4}{{{n^2}}} + 1} \right)}  = \sqrt {0 + 1}  = 1\)

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Hoạt động 4 (SGK Cánh Diều trang 63)

Hướng dẫn giải

a) \(\left| q \right| = \left| {\frac{1}{2}} \right| < 1\)

b) \(\begin{array}{l}{S_n} = {u_1} + {u_2} + ... + {u_n} = {u_1}.\frac{{1 - {q^n}}}{{1 - q}} = 1.\frac{{1 - {{\left( {\frac{1}{2}} \right)}^n}}}{{1 - \frac{1}{2}}} = 2 - 2.{\left( {\frac{1}{2}} \right)^n}\\ \Rightarrow \lim {S_n} = \lim \left[ {2 - 2.{{\left( {\frac{1}{2}} \right)}^n}} \right] = \lim 2 - 2\lim {\left( {\frac{1}{2}} \right)^n} = 2\end{array}\)

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Luyện tập - Vận dụng 5 (SGK Cánh Diều trang 63)

Hướng dẫn giải

Các số hạng của tổng lập thành cấp số nhân \(\left( {{u_n}} \right),\) có \({u_1} = 1,q =  - \frac{1}{2}\) nên \(M = \frac{1}{{1 - \frac{{ - 1}}{2}}} = \frac{2}{3}\)

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Luyện tập - Vận dụng 6 (SGK Cánh Diều trang 63)

Hướng dẫn giải

Để đơn giản, ở đây ta chỉ xét một trường hợp cụ thể (trường hợp tổng quát được giải quyết tương tự).

Giả sử tốc độ chạy của A-sin là 100 km/h, còn tốc độ chạy của rùa là 1km/h. Lúc xuất phát, rùa ở điểm A1 cách điểm xuất phát O của A-sin 100km.

Ta tính thời gian A-sin đuổi kịp rùa, bằng cách tính tổng thời gian A-sin chạy hết các quãng đường OA1, A1A2, A2A3,... , An-1An,... Nếu tổng này vô hạn thì A-sin không thể đuổi kịp được rùa, còn nếu nó hữu hạn thì đó chính là thời gian mà A-sin đuổi kịp rùa. 

Để chạy hết quãng đường OA1 =100 (km), A-sin phải mất thời gian t1 =\(\frac{{100}}{{100}}\) =1 (h). 

Với thời gian t1 này, rùa đã chạy được quãng đường A1A=1 (km).

Để chạy hết quãng đường A1A=1 (km), A-sin phải mất thời gian t2 = \(\frac{1}{{100}}\) (h). 

Với thời gian t2 rùa đã chạy thêm được quãng đường A2A= \(\frac{1}{{100}}\) (km).

Tiếp tục như vậy, để chạy hết quãng đường An-1An = \(\frac{1}{{{{100}^{n - 2}}}}\) (km), A-sin phải mất thời gian tn = \(\frac{1}{{{{100}^{n - 1}}}}\) (h). 

Vậy tổng thời gian A-sin chạy hết các quãng đường OA1, A1A2, A2A3,... , An-1An,...  là: 

\(T = 1 + \frac{1}{{100}} + \frac{1}{{{{100}^2}}} + \frac{1}{{{{100}^3}}} + ... + \frac{1}{{{{100}^n}}} + ...\left( h \right)\)

Đó là tổng của một cấp số nhân lùi vô hạn với u1 =1, công bội q = \(\frac{1}{{100}}\), nên ta có:

\(T = \frac{1}{{1 - \frac{1}{{100}}}} = \frac{{100}}{{99}}\left( h \right)\)

Như vậy, A-sin đuổi kịp rùa sau \(\frac{{100}}{{99}}\) giờ. 

Vậy nghịch lí Zénon trong phần mở đầu là không đúng.

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Luyện tập - Vận dụng 7 (SGK Cánh Diều trang 64)

Hướng dẫn giải

Xét dãy \(\left( {{u_n}} \right) = {n^3}\)

Với M là số dương bất kì, ta thấy \({u_n} > M \Leftrightarrow {n^3} > M \Leftrightarrow n > \sqrt[3]{M}.\)

Vậy với các số tự nhiên \(n > \sqrt[3]{M}\) thì \({u_n} > M.\) Do đó, \(\lim {n^3} =  + \infty  \Rightarrow \lim \left( { - {n^3}} \right) =  - \infty \)

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)