Cho tam giác ABC cân tại A nội tiếp đường tròn (O) .Gọi M 1 điểm tùy ý trên cung nhỏ AC . Vẽ tia Bx vuông góc với AM,cắt tia CM tại D
a) Tính số đo góc AMD
b) Chứng minh rằng MD=MB
Bài 1. Cho tam giác ABC cân tại A nội tiếp đường tròn (O) và 𝐴= 𝑎(0 < 𝑎 < 90). Gọi M là một điểm tuỳ ý trên cung nhỏ AC. Vẽ tia Bx vuông góc AM, cắt tia CM tại D.
a) Tính số đo góc 𝐴𝑀D b) Chứng minh rằng MD = MB.
a: góc ABC=góc ACB=(180 độ-a)/2=90 độ-1/2*a
ABCM nội tiếp
=>góc AMD=góc ABC=90 độ-a/2
b: góc AMB=góc ACB
góc DMA=góc ABC
=>góc AMB=góc DMA
=>MA là phân giác của góc DMB
Xét ΔDMB có
MA vừa là đường cao, vừa là phân giác
=>ΔMDB cân tại M
=>MD=MB
Cho tam giác ABC cân tại A nội tiếp đường tròn (0;R) và 1 điểm M bất kì trên cung nhỏ AC (M khác A và C) . Tia Bx vuong góc với AM cắt tia CM tại D . Chúng minha, góc AMD =góc ABCb, tam giác BMD cânc, khi M thay đổi trên cung nhỏ AC thì độ lớn góc BDC hkông đổi
Cho tam giác ABC cân tại A nội tiếp đường tròn tâm O , đường kính AI điểm M tùy ý trên cung nhỏ AC(M khác A, M khác C) .Kẻ tia Mx là tia đối của tia MC .
1) Trên tia đối của tia MB lấy điểm D sao cho MD= MC, Gọi K là giao điểm thứ hai của DC với đường tròn tâm O . chứng minh rằng tứ giác MIKD là hình bình hành
3) Chứng minh rằng khi M di động trên cung nhỏ AC thì D di động trên cung tròn cố định
Cho tam giác ABC cân tại A nội tiếp đường tròn tâm O đường kính AI điểm M tùy ý trên cung nhỏ ACq(Mkhác A,M khác C)kẻ tia Mx là tia đối của tia MC.
A)Trên tia đối của tia MB lấy điểm D sao cho MD= MC, Gọi K là giao điểm thứ hai của DC với đường tròn tâm O .chứng minh rằng tứ giác MIKD là hình bình hành
B) Chứng minh rằng khi M di động trên cung nhỏ AC thì D di động trên cung tròn cố định
Cho tam giác ABC cân tại A, nội tiếp đường tròn (O), tia AO cắt đường tròn (O) tại D. Lấy M trên cung nhỏ AB. Dây MD cắt dây BC tại I. Trên tai đối của MC lấy điểm E sao cho ME = MB. Chứng minh:
a) MD là phân giác của góc BMC
b) MI song song BE
c) Gọi giao điểm của đường tròn tâm D, bán kính DC với MC là k. Chứng minh rằng tứ giác DCKI nội tiếp
Cho tam giác ABC cân tại A nội tiếp đường tròn tâm O , đường kính AI. Điểm M tùy ý trên cung nhỏ AC (M khác A, M khác C) . Kẻ tia Mx là tia đối của tia MC.
1) Cứng minh rằng MA là tia phân giác của tia BMx.
2) Trên tia đối của tia MB lấy điểm D sao cho MD - MC , gọi K là giao điểm thứ hai của dc với đường tròn tâm (O) . Chứng minh rằng tứ giác MIKD là hình bình hành.
3) Chứng minh rằng khi M di động trên cung nhỏ AC thì D di động trên cung tròn cố định.
a. Do ABCM là tứ giác nội tiếp nên \(\widehat{AMx}=\widehat{ABC}\)
Lại do tam giác ABC cân tại A nên \(\widehat{ABC}=\widehat{ACB}\)
Mà \(\widehat{ACB}=\widehat{AMB}\) (Góc nội tiếp cùng chắn cung AB)
Vậy nên \(\widehat{AMB}=\widehat{AMx}\) hay MA là phân giác góc \(\widehat{BMx}.\)
b. Do tam giác ABC cân tại A nên AI là phân giác góc BAC. Vậy thì cung BI = cung CI hay góc \(\widehat{BMI}=\widehat{IKC}\)
Từ đó suy ra \(\widehat{DMI}=\widehat{IKD}\) (Cùng phụ với hai góc trên)
Lại có do MD = MC \(\Rightarrow\widehat{MDK}=\widehat{MCK}=\widehat{MIK}\)
Tứ giác DMIK có các góc đối bằng nhau nên nó là hình bình hành.
c. Do MA là phân giác góc BMx nên MA thuộc đường phân giác góc DMC.
Lại có MD = MC nên MA chính là đường trung trực của DC.
Vậy thì DA = AC, hay D luôn thuộc đường tròn tâm A, bán kính AC.
Cho đường tròn tâm O đường kính AB và CD vuông góc với nhau . Điểm M nằm trên cung nhỏ AC sao cho
MC < MA .
a) Chứng minh CMB = DMB
b) Từ C kẻ đường vuông góc với MB cắt MD tại E và cắt AB tại F . Chứng minh tam giác MCF vuông cân .Tính số đo góc DEC
c) Chứng minh tứ giác EFDB nội tiếp được một đường tròn .Xác định tâm của đường tròn ngoại tiếp tam giác DEC
: Cho đường tròn (O) bán kính R và một dây BC cố định. Gọi A là điểm chính giữa của cung nhỏ BC. Lấy điểm M trên cung nhỏ AC, kẻ tia Bx vuông góc với tia MA ở I và cắt tia CM tại D.
1) Chứng minh AMD=ABC và MA là tia phân giác của góc BMD.
2) Chứng minh A là tâm đường tròn ngoại tiếp tam giác BCD và góc BDC có độ lớn không phụ thuộc vào vị trí điểm M.