Cho ∆nhọn ABC nội tiếp đường tròn(O) gọi M là giao điểm bất kì trên cung nhỏ BC của đường tròn (O) CM không trùng với BC kẻ MH vuông góc với đường thẳng AB tại H MK vuông góc với đường thẳng AC tại K a.chứng minh tứ giác AHMK nội tiếp b.chứng minh MH.MC=MK.MB
Cho tam giác ABC nội tiếp (O) . Tia phân giác góc A cắt đường tròn tại M, tia phân giác góc ngoài tại đỉnh A cắt đường tròn tại N . CM:
a) tam giác MBC cân
b) CM: O, M, N thẳng hàng
Cho tam giác ABC cân tại A, góc A nhọn.đường vuông góc với AB tại A cắt đường thẳng BC ở D .kẻ DF vuông góc với AC tại E.gọi M là trung điểm của BC đường thẳng AM và DE cắt nhau tại F chứng minh: Tứ giác AMED nội tiếp 1 đường tròn Giúp mik bài này với!!
cho nửa đường tròn (O) có đường kính AB và điểm C thuộc nửa đường tròn đó (C khác A,B).Lấy điểm M thuộc dây BC(M khác B,C) .Tia AM cắt cung nhỏ BC tại điểm N,tia AC cắt BN tại điểm P.Cm:PCMN là tứ giác nội tiếp
Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn O các đường cao AM , BN cho tam giác ABC cắt nhau tại H và cắt đường tròn lần lượt tại D và E Chứng minh A, tứ giác MHNC nội tiếp đường tròn B, CD = CE C, CB là tia phân giác của góc HCD
Cho đường tròn O và hai đường kính AB CD vuông góc với nhau lấy một điểm M trên cung nhỏ BC g vẽ tiếp tuyến với đường tròn O tại M tiếp tuyến này cắt CD tại S lấy điểm F thuộc cung nhỏ BC cắt AB ở E Chứng minh:
a, BD2 = DE.DF
b, góc MSD = góc MBA
Cho tam giác ABC nội tiếp [O] .Tia phân giác của góc ABC cắt AC ở M và cắt [O] tại N.CMR
A/ Góc AMN=Góc BAN
B/ BA.BC=BM.BN
Cho đường tròn O và hai đường kính AB CD vuông góc với nhau lấy một điểm M trên cung nhỏ BC g vẽ tiếp tuyến với đường tròn O tại M tiếp tuyến này cắt CD tại S lấy điểm F thuộc cung nhỏ BC cắt AB ở E Chứng minh:
a,BD mũ 2 = DE.DF
b, góc MSD = góc 2MBA
Cho tam giác ABC vuông tại A, M là một điểm trên AC. Đường tròn đường kính CM cắt BM và BC lần lượt tại D và N; AD cắt đường tròn tại S. Chứng minh rằng:
a) A, B, C, D cùng thuộc một đường tròn.
b) CA là phân giác góc SCB.
c) Các đường AB, MN, CD đồng quy.
GIÚP MÌNH VỚI MAI MÌNH THI RÙIIII