Cho hình thang ABCD (AB song song với CD) AC cắt BD tại O.Biết OA=/3 OC , AB=4.Tính CD
Cho hình thang ABCD (AB song song với CD) AC cắt BD tại O.Biết OA=1/3 OC , AB=4.Tính CD
Xét ΔOAB và ΔOCD có
\(\widehat{OAB}=\widehat{OCD}\)
\(\widehat{AOB}=\widehat{COD}\)
Do đó: ΔOAB\(\sim\)ΔOCD
Suy ra: AB/CD=OA/OC
=>4/CD=1/3
hay CD=12(cm)
Cho hình thang ABCD có AC cắt BD tại O. Đường thẳng qua B song song với cạnh bên AD cắt đoạn OC tại E. BIết CE=OA, tính tỉ số AB/CD
Bạn phải đợi thôi, khổ thân bạn thật.
Bạn đợi hết tết khi ấy mấy bạn giỏi sẽ giúp bạn thôi nha.
bai nay kha kho cs can chung minh va ve hinh ko bn
Cho hình thang ABCD có AC cắt BD tại O. Đường thẳng qua B song song với cạnh bên AD cắt đoạn OC tại E. BIết CE=OA, tính tỉ số AB/CD
Lời giải:
Áp dụng định lý Talet cho các cặp cạnh song song ta có:
$\frac{CD}{AB}=\frac{OC}{OA}=\frac{OE+EC}{OA}=\frac{OE}{OA}+\frac{EC}{OA}=\frac{OB}{OD}+1=\frac{AB}{CD}+1$
Đặt $\frac{AB}{CD}=x(x>0)$ thì:
$\frac{1}{x}=x+1\Leftrightarrow x^2+x-1=0$
Do $x>0$ nên $x=\frac{-1+\sqrt{5}}{2}$
Vậy.........
Cho hình thang ABCD (AB//CD; AB<CD). Gọi O là giao của hai đường chéo AC và BD. Qua O kẻ đường thẳng song song với AB cắt AD, BC tại M,N
a, chứng minh OA.OD=OB.OC
b, biết AB=5cm; CD=10cm; OC=6cm. Tính OA,OM
c, chứng minh 1/OM = 1/ON = 1/AB + 1/ CD
c. -Xét △ADC có: OM//DC (gt).
\(\Rightarrow\dfrac{MO}{DC}=\dfrac{AO}{AC}\) (định lí Ta-let).
\(\Rightarrow\dfrac{DC}{MO}=\dfrac{AC}{AO}\)
\(\Rightarrow\dfrac{DC}{OM}-1=\dfrac{OC}{AO}\) (1).
-Xét △BDC có: ON//DC (gt).
\(\Rightarrow\dfrac{ON}{DC}=\dfrac{BO}{BD}\) (định lí Ta-let).
\(\Rightarrow\dfrac{DC}{ON}=\dfrac{BD}{BO}\)
\(\Rightarrow\dfrac{DC}{ON}-1=\dfrac{OD}{BO}\)
-Xét △ABO có: AB//DC (gt).
\(\Rightarrow\dfrac{OD}{BO}=\dfrac{OC}{OA}=\dfrac{DC}{AB}\) (3)
-Từ (1), (2),(3) suy ra:
\(\dfrac{DC}{OM}-1=\dfrac{DC}{ON}-1=\dfrac{DC}{AB}\)
\(\Rightarrow\dfrac{DC}{OM}=\dfrac{DC}{ON}=\dfrac{DC}{AB}+1=\dfrac{AB+DC}{AB}\)
\(\Rightarrow\dfrac{1}{OM}=\dfrac{1}{ON}=\dfrac{AB+DC}{AB.DC}=\dfrac{1}{AB}+\dfrac{1}{CD}\)
a: Xét ΔAOB và ΔCOD có
\(\widehat{OAB}=\widehat{OCD}\)
\(\widehat{AOB}=\widehat{COD}\)
Do đó: ΔAOB∼ΔCOD
Suy ra: \(\dfrac{OA}{OC}=\dfrac{OB}{OD}=\dfrac{AB}{CD}\)
hay \(OA\cdot OD=OB\cdot OC\)
b: \(\dfrac{OA}{OC}=\dfrac{AB}{CD}\)
\(\Leftrightarrow OA=\dfrac{1}{2}\cdot6=3\left(cm\right)\)
Bài 1: Cho hình thang ABCD (AB//CD); AC giao với BD tại O. Chứn minh rằng OA . OD = OB . OC
Bài 2: Cho hình thang ABCD (AB//CD); một đường thẳng song sonh với AB cắt AD, BC, AC, BD lần lượt tại M, N, P, Q. Chứng minh rằng MN=PQ.
Bài 3: Cho hình thang ABCD (AB//CD); E thuộc BC. Kẻ CK//AE (K thuộc AD). Chứng minh rằng BK//DE.
(Các bn làm hộ mk ý c thôi nha)
Cho hình thang ABCD (AB song song với CD). Gọi AC giao với BD tại O, AD giao với BC tại I, OI cắt AB tại E, cắt CD tại F.
a) CM; \(\dfrac{OA+OB}{OC+OD}=\dfrac{IA+IB}{IC+ID}\)
b) CM; EA=EB
c) Nếu CD=3AB và \(S_{ABCD}=48cm^2\). Tính \(S_{IAOB}\)
a, Xét Δ IDC có
AB // CD => ΔIAB \(\sim\) ΔIDC
=> \(\dfrac{IA}{ID}\) = \(\dfrac{IB}{IC}\) = \(\dfrac{AB}{DC}\)
Xét ΔOAB và ΔOCD có
\(\widehat{OAB}=\widehat{OCD}\) ; \(\widehat{ODC}=\widehat{OBA}\) ; \(\widehat{AOB}=\widehat{COD}\)
=> ΔOAB \(\sim\) ΔOCD
=> \(\dfrac{OA}{OC}=\dfrac{OB}{OD}=\dfrac{AB}{CD}\)
=> \(\dfrac{OA}{OC}=\dfrac{OB}{OD}=\dfrac{IA}{ID}=\dfrac{IB}{IC}=\dfrac{IA+IB}{ID+IC}=\dfrac{OA+OB}{OC+OD}\)
Cho hình thang ABCD ( AB song song CD). Sao cho AC ⊥ BD, Chúng cắt nhau ở O
a, Chứng minh; OC=OD
B, Từ B kẻ đường thằng song song với AC cắt CD ở E. △BDE là tam giác gì
C, Gọi M, N lần lượt là trung điểm của AD, BD , BH là đường cao của hình thang. Chứng minh BH=MN
Cho hình thang ABCD (AB song song CD) O là giao điểm hai đường chéo AC và BD. Qua O kẽ đường thẳng song song với đáy AB cắt AD,BC tại E,G
a.C/m OA.OD=OB.OC
b. Cho AB=5 cm CD=10cm OC=6cm. Tính OA,OE
c.C/m 1/DE=1/OG=1/AB+1/CD
Cho hình thang ABCD cạnh đáy AB và CD, AC cắt BD tại O.Biết AB = 6cm; DC = 10cm, chiều cao bằng \(\frac{2}{3}\)đáy nhỏ. Tính tỉ số \(\frac{OA}{OC}\)
ABCD là hình thang nên AB//CD
tg OAB và tg OCD có :
góc BAC=Góc ADC(so le trong do AB//CD)
góc ABD =góc BDC(so le trong do AB//CD)
nên Tg OABđồng dạng với tg OCD(g.g)
=>\(\frac{OA}{OC}=\frac{AB}{CD}=\frac{6}{10}=\frac{3}{5}\)