Cho ab+a+b=1.Chứng minh (a^2 + 1)(b^2 + 1)=2(a+b)^2
Cho a>2, b>2.
a) Chứng minh a.b > a+b
b) Chứng minh a^2+b^2+c^2 ≥ ab+bc+ca
c) Chứng minh a^2+b^2+c^2+3 ≥ 2.(a+b+c)
d) Chứng minh a^2+b^2 ≥ 1/2 với a+b=1
e) Chứng minh a^2+b^2+c^2 ≥ 1/3 với a+b+c=1
cho a+b =1 và ab khác 0. Chứng minh a/b^3-1 + b/a^3-1 =2(ab-2)/a^2.b^2+3
Cho ab+a+b=1.Chứng minh (a^2 + 1)(b^2 + 1)=2(a+b)^2
Ta có : \(\left(a^2+1\right)\left(b^2+1\right)=\left(a^2+ab+a+b\right)\left(b^2+ab+a+b\right)\)
\(=\left(a+1\right)\left(a+b\right)\left(b+1\right)\left(a+b\right)=\left(ab+a+b+1\right)\left(a+b\right)^2\)
\(=\left(1+1\right)\left(a+b\right)^2=2\left(a+b\right)^2\)(đpcm)
chịu ai bt đc 90% là 2k10 mà
Ta có:\(\left(a^2+1\right)\left(b^2+1\right)=2\left(a+b\right)^2\)
Xét \(VT=\left(a^2+1\right)\left(b^2+1\right)\)
\(=\left(a^2+ab+a+b\right)\left(b^2+ab+a+b\right)\)Do \(ab+a+b=1\)
\(=\left[a\left(a+b\right)+\left(a+b\right)\right]\left[b\left(a+b\right)+\left(a+b\right)\right]\)
\(=\left(a+b\right)\left(a+1\right)\left(b+1\right)\left(a+b\right)\)
\(=\left(a+b\right)^2\left(ab+a+b+1\right)\)Do \(ab+a+b=1\)
\(=\left(a+b\right)^2\left(1+1\right)\)
\(=2\left(a+b\right)^2=VP\)
1)Cho a,b,c >0
Chứng minh bc/a^2(b+c) + ca/b^2(c+a) +ab/c^2(a+b) > hoặc = 1/2(1/a+1/b+1/c)
2) Cho a,b,c>0 1/a + 1/b + 1/c =1
Chứng minh (b+c)/a^2 + (c+a)/b^2 + (a+b)/c^2 > hoặc = 2
1)Cho a,b,c >0
Chứng minh bc/a^2(b+c) + ca/b^2(c+a) +ab/c^2(a+b) > hoặc = 1/2(1/a+1/b+1/c)
2) Cho a,b,c>0 1/a + 1/b + 1/c =1
Chứng minh (b+c)/a^2 + (c+a)/b^2 + (a+b)/c^2 > hoặc = 2
Đọc tiếp...
Cho 2 số hữu tỉ a và b thỏa a+b=ab=a/b : 1. Chứng minh a/b =a-1 2. Chứng minh b=-1 3. Tìm a
cho a+b=1 và ab#0. chứng minh a/b^2-1 + b/a^3-1=2(ab-2)/a^2b^2+3
MẤY BẠN GIẢI NHANH GIÚP MÌNH MẤY BÀI TOÁN KHÓ NÀY NHA, MAI MÌNH ĐẾN HẠNG NỘP RỒI:
a) Cho a,b,c >0 thỏa 1/a+1/c=2/b. Chứng ming (a+b)/(2a-b)+ (b+c)/(2c-b) >=4
b) cho a,b >0 và a+b<=1. Chứng minh 1/(a^2+ab) + 1/(b^2+ab) >=4
c) cho a,b,c>0. Chứng minh (a+b+c)(a^2+b^2+c^2)>=9abc
Cho a, b: ab\(\ge\)1. Chứng minh:
\(\dfrac{1}{1+a^2}+\dfrac{1}{1+b^2}\ge\dfrac{2}{1+ab}\)
Lời giải:
BĐT \(\Leftrightarrow \frac{a^2+b^2+2}{(a^2+1)(b^2+1)}\geq \frac{2}{ab+1}\)
$\Leftrightarrow (a^2+b^2+2)(ab+1)\geq 2(a^2b^2+a^2+b^2+1)$
$\Leftrightarrow a^3b+a^2+ab^3+b^2+2ab+2\geq 2a^2b^2+2a^2+2b^2+2$
$\Leftrightarrow a^3b+ab^3+2ab\geq 2a^2b^2+a^2+b^2$
$\Leftrightarrow ab(a^2+b^2-2ab)-(a^2+b^2-2ab)\geq 0$
$\Leftrightarrow ab(a-b)^2-(a-b)^2\geq 0$
$\Leftrightarrow (a-b)^2(ab-1)\geq 0$
Điều này luôn đúng với mọi $ab\geq 1$
Do đó ta có đpcm
Dấu "=" xảy ra khi $a=b$ hoặc $ab=1$
1/ Cho a,b>0 , thỏa mãn ab = 1. Chứng minh rằng:
\(\dfrac{a}{\sqrt{b+2}}+\dfrac{b}{\sqrt{a+2}}+\dfrac{1}{\sqrt{a+b+ab}}\ge\sqrt{3}\)
2/ Cho a>0. Chứng minh rằng:
a+\(\dfrac{1}{a}\ge\sqrt{\dfrac{1}{a^2+1}}+\sqrt{1+\dfrac{1}{a^2+1}}\)
3/ Cho a, b>0. Chứng minh rằng:
2(a+b)\(\le1+\sqrt{1+4\left(a^3+b^3\right)}\)