Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đinh Hoàng Huy
Xem chi tiết
Nguyễn Đức Trí
5 tháng 7 2023 lúc 20:03

1) ab=2 (I); bc=3 (II); ca=54 (III)

Lấy (I).(II).(III) ⇒ a2 . b2 . c2 = 324 ⇒ abc = ±18

(II) ⇒ a= ±6 ; (I) ⇒ b= ±1/3 ; (II) ⇒ c= ±9

2) ab=5/3 (I); bc=4/5 (II); ca=3/4 (III)

Lấy (I).(II).(III) ⇒ a2 . b2 . c2 = 1 ⇒ abc = ±1

(II) ⇒ a= ±5/4 ; (I) ⇒ b= ±4/3 ; (II) ⇒ c= ±3/5

3) a(a+b+c)= -12 (I)

    b(a+b+c)= 18 (II)

    c(a+b+c)= 30 (III)

Lấy (I)+(II)+(III) ⇒ (a+b+c)2 = 36 ⇒ a+b+c = ±6

TH1 : a=6 ⇒ a= -12/6 = -2 ; b= 18/6 = 3 ; c= 30/6 = 5

TH2 : a=-6 ⇒ a= -12/-6 = 2 ; b= 18/-6 = -3 ; c= 30/-6 = -5

 

PhamQuangLocAAA
Xem chi tiết
meme
26 tháng 8 2023 lúc 7:15

Để tìm giá trị nhỏ nhất của biểu thức B = ab + bc + ca + a^3 + b^3 + c^3 / 5(ab + bc + ca) + 1, ta có thể sử dụng phương pháp đạo hàm.

Đầu tiên, ta tính đạo hàm của biểu thức B theo a, b và c. Đạo hàm riêng của B theo a, b và c được tính như sau:

∂B/∂a = 3a^2 + b^3 + c^3 / 5(ab + bc + ca) + 1 - (a^3 + b^3 + c^3)(b + c) / (5(ab + bc + ca) + 1)^2 ∂B/∂b = a^3 + 3b^2 + c^3 / 5(ab + bc + ca) + 1 - (a^3 + b^3 + c^3)(a + c) / (5(ab + bc + ca) + 1)^2 ∂B/∂c = a^3 + b^3 + 3c^2 / 5(ab + bc + ca) + 1 - (a^3 + b^3 + c^3)(a + b) / (5(ab + bc + ca) + 1)^2

Tiếp theo, ta giải hệ phương trình ∂B/∂a = ∂B/∂b = ∂B/∂c = 0 để tìm các điểm cực trị của biểu thức B.

Sau khi tìm được các điểm cực trị, ta so sánh giá trị của B tại các điểm cực trị và tại các điểm biên của miền xác định để tìm giá trị nhỏ nhất của B.

Tuy nhiên, việc giải phương trình và tính toán các giá trị có thể làm cho quá trình này trở nên phức tạp và mất nhiều thời gian.

Do đó, để tìm giá trị nhỏ nhất của biểu thức B, ta có thể sử dụng phương pháp khác như phương pháp đặt tính chất của hàm để giải quyết bài toán này.

ha quang minh
Xem chi tiết
bùi Anh
Xem chi tiết
Nguyễn Thị Mỹ vân
Xem chi tiết
Nguyễn Việt Lâm
30 tháng 8 2021 lúc 20:46

Ta chứng minh BĐT sau cho các số dương:

\(x^5+y^5\ge xy\left(x^3+y^3\right)\)

\(\Leftrightarrow x^5-x^4y+y^5-xy^4\ge0\)

\(\Leftrightarrow\left(x^4-y^4\right)\left(x-y\right)\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\left(x+y\right)\left(x^2+y^2\right)\ge0\) (đúng)

Áp dụng:

\(\dfrac{a^5+b^5}{ab\left(a+b\right)}\ge\dfrac{ab\left(a^3+b^3\right)}{ab\left(a+b\right)}=\dfrac{a^3+b^3}{a+b}=a^2-ab+b^2\)

Tương tự và cộng lại:

\(VT\ge2\left(a^2+b^2+c^2\right)-\left(ab+bc+ca\right)=2-\left(ab+ca+ca\right)\)

\(VT\ge4-\left(ab+bc+ca\right)-2=4\left(a^2+b^2+c^2\right)-\left(ab+bc+ca\right)-2\)

\(VT\ge4\left(ab+bc+ca\right)-\left(ab+bc+ca\right)-2=3\left(ab+bc+ca\right)-2\) (đpcm)

Kim Yuri
Xem chi tiết
Nguyễn Việt Lâm
29 tháng 9 2020 lúc 23:47

Với các số dương x; y ta có:

\(x^5+y^5=\left(x^3+y^3\right)\left(x^2+y^2\right)-x^2y^2\left(x+y\right)\)

\(\Rightarrow x^5+y^5\ge xy\left(x+y\right).2xy-x^2y^2\left(x+y\right)=x^2y^2\left(x+y\right)\)

\(\Rightarrow P\le\frac{ab}{a^2b^2\left(a+b\right)+ab}+\frac{bc}{b^2c^2\left(b+c\right)+bc}+\frac{ca}{c^2a^2\left(c+a\right)+ca}\)

\(P\le\frac{1}{ab\left(a+b\right)+1}+\frac{1}{bc\left(b+c\right)+1}+\frac{1}{ca\left(c+a\right)+1}\)

\(P\le\frac{abc}{ab\left(a+b\right)+abc}+\frac{abc}{bc\left(b+c\right)+abc}+\frac{abc}{ca\left(a+c\right)+abc}\)

\(P\le\frac{c}{a+b+c}+\frac{a}{a+b+c}+\frac{b}{a+b+c}=1\)

Dấu "=" xảy ra khi \(a=b=c=1\)

đấng ys
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 9 2021 lúc 20:13

Với x;y dương, ta có BĐT:

\(x^5+y^5\ge x^2y^2\left(x+y\right)\)

Thật vậy, BĐT tương đương:

\(x^5-x^4y+y^5-xy^4\ge0\)

\(\Leftrightarrow x^4\left(x-y\right)-y^4\left(x-y\right)\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\left(x+y\right)\left(x^2+y^2\right)\ge0\) (luôn đúng)

Áp dụng:

\(\Rightarrow A\le\dfrac{ab}{a^2b^2\left(a+b\right)+ab}+\dfrac{bc}{b^2c^2\left(b+c\right)+bc}+\dfrac{ca}{c^2a^2\left(c+a\right)+ca}\)

\(A\le\dfrac{1}{ab\left(a+b\right)+1}+\dfrac{1}{bc\left(b+c\right)+1}+\dfrac{1}{ca\left(c+a\right)+1}\)

\(A\le\dfrac{abc}{ab\left(a+b\right)+abc}+\dfrac{abc}{bc\left(b+c\right)+abc}+\dfrac{abc}{ca\left(c+a\right)+abc}=\dfrac{c}{a+b+c}+\dfrac{a}{a+b+c}+\dfrac{b}{a+b+c}=1\)

truong quang huy
Xem chi tiết
Uzumaki Naruto
Xem chi tiết