Cho đa thức P(x)=ax^2+bx+c và 5a-b+c=0. Chứng tỏ rằng 0 ≥ P(1).P(-3)
Cho đa thức Q(x)=ax^2+bx+c
a) biết 5a+b+2c=0 . Chứng tỏ rằng Q(x).Q(-1) < hoặc = 0
b) biết Q(x)=0 với mọi x . Chứng tỏ rằng a=b=c=0
Cho đa thức P(x)=ax2 +bx +c. Chứng tỏ rằng P(-1).P(-2)≤ 0 biết rằng 5a -3b +2c=0
Nếu như theo mik ns thì bài toán làm sau đây
\(p\left(-1\right)=a\left(-1\right)^2-b.1+c=a-b+c\) (1)
\(p\left(2\right)=a\left(2^2\right)+b.2+c=4a-2b+c\) (2)
Lấy (1)+(2)
\(p\left(-1\right)+p\left(-2\right)=5a-3b+2c=0\)
\(p\left(-1\right)=-P\left(-2\right)\)\(=p\left(2\right)\)
Lấy p(-1).p(2) trái dấu
\(\Rightarrow p\left(-1\right).p\left(2\right)\le0\)
\(\Rightarrow p\left(-1\right).p\left(-2\right)\le0\)
Cho đa thức: Q(x)=ax^2+bx+c. Biết 5a+b+2c=0. Chứng tỏ rằng Q(2)*Q(-1) bé hơn 0.
Ta có: \(Q\left(2\right)=4a+2b+c;Q\left(-1\right)=a-b+c\)
\(\Rightarrow Q\left(2\right)+Q\left(-1\right)=5a+b+2c=0\)
\(\Rightarrow Q\left(2\right)=-Q\left(-1\right)\Rightarrow Q\left(2\right),Q\left(-1\right)\) trái dấu
\(\Rightarrow Q\left(2\right).Q\left(-1\right)< 0\)
cho đa thức P(x)=ax^2+bx+c=0. Chứng tỏ rằng nếu 5a-b+2c=0 thì P(-2)*P(1)<hoặc = 0
Ta có:\(P\left(-2\right)=4a-2b+c\)
\(P\left(1\right)=a+b+c\)
Lấy:\(P\left(1\right)+P\left(-2\right)=5a-b+2c=0\)(theo đề bài)
Vì vậy:\(P\left(1\right)=-P\left(-2\right)\)(Hai số đối nhau tổng bằng 0 )
Do đó:\(P\left(-2\right).P\left(1\right)\le0\)( . là dấu nhân nha bn)
Cho đa thức P(x) = ax2+bx+c và 5a - b + c = 0. Chứng tỏ rằng P(1). P(3) ≤ 0
\(a=1,b=6,c=1\)
\(5a-b+c=5-6+1=0\)
\(P\left(1\right).P\left(3\right)=\left(1.1^2+6.1+1\right).\left(1.3^2+6.3+1\right)>0?\)
3. cho đa thức P(x)=ax2+bx+c. chứng tỏ: P(-1). P(-2) lớn hơn hoặc bằng 0 biết rằng 5a-3b+2c=0
Ta có: P(-1) = a-b+c
P(-2) = 4a-2b+c
=> P(-1)+P(-2) = 5a-3b+2c = 0
=> P(-1) = P(2)
=> P(-1).P(-2) = P(2).P(-2) = - [P(2)]2 \(\le\)0
Vậy P(-1).P(-2) \(\le\)0
...
=> ...
=> P(-1) = - P(-2)
=> P(-1).P(-2) = - P2(-2) \(\le\)0 vì P2(-2) \(\ge\)0
=> P(-1).P(-2) \(\ge\)0
Câu trả lời này mới đúng , vừa nãy mk nhầm tưởng là nhỏ hơn hoặc bằng, sau đó mk nhìn lại đề bài nên mk sửa
Cho đa thức P(x) = ax^2 + bx + c.
Chứng tỏ rằng P(-1).P(-2) ≤ 0 biết rằng 5a – 3b + 2c = 0
P(-1) = (a – b + c);
P(-2) = (4a – 2b + c)
P(-1) + P(-2) = (a – b + c) + (4a – 2b + c) = 5a – 3b + 2c = 0
Þ P(-1) = – P(-2)
Do đó P(-1).P(-2) = – [P(-2)]^2 ≤ 0
Vậy P(-1).P(-2) ≤ 0
Cho đa thức : Q(x) =ax2+bx+c
a, Biết 5a+b+2c=0. Chứng tỏ rằng Q(2).Q(-1)</
b, Biết Q(x) =o . Chứng minh rằng a=b=c=0
Cho đa thức H(x)=ax^2+bx+c. Biết 5a-3b+c=0. Hãy chứng tỏ rằng H(-1).H(-2)< hoặc = 0.
#Giải:
Ta có:H(x)=ax^2+bx+c
=>H(-1)=a-b+c
H(-2)=4a-2b+c
=>H(-1)+H(-2)=a-b+c+4a
=5a-3b+2c
=a
=>H(-1)-H(-2)=0
H(-1)=H(-2)
=>H(-1).H(-2)=0
H(-1).H(-2)<0
=>H(-1).H(-2)< hoặc =0.