Cho hình vuông ABCD và M, N là trung điểm của các cạnh tương ứng BC
và CD. Giá trị của cos ANM là
A. \(\dfrac{\sqrt{5}}{5}\) B. \(\dfrac{\sqrt{10}}{10}\) C. \(\dfrac{\sqrt{10}}{5}\) D. \(\dfrac{4}{5}\)
Cho ΔABC cân tại A.I là giao điểm của hai đường phân giác trong.Biết IB=3;IA=\(3\sqrt{6}\).Độ dài cạnh AB là
A.5\(5\sqrt{3}\) B.\(3\sqrt{19}\) C.\(3\sqrt{10}\) D.\(\dfrac{3\sqrt{17}}{2}\)
Cho hình thang ABCD có 2\(\overrightarrow{AB}\) = \(\overrightarrow{DC}\). AC = 8; BD = 6 và
\(\left(\overrightarrow{AC};\overrightarrow{BD}\right)=120^0\). Khi đó giá trị của S = AD + BC là
A. \(\dfrac{13+2\sqrt{5}}{2}\)
B. \(\dfrac{14+4\sqrt{7}}{3}\)
C. \(\dfrac{15+2\sqrt{10}}{4}\)
D. \(6+4\sqrt{3}\)
Cho biểu thức A = \(\dfrac{\sqrt{x}}{\sqrt{x}-5}-\dfrac{10\sqrt{x}}{x-25}-\dfrac{5}{\sqrt{x}+5}\) với \(x\ge0,x\ne25\).
Biểu thức A sau khi rút gọn là: \(\dfrac{\sqrt{x}-5}{\sqrt{x}+5}\)
1) Tìm các giá trị của x để A = \(\dfrac{2\sqrt{x}}{3}\)
\(A=\dfrac{\sqrt{x}}{\sqrt{x}-5}-\dfrac{10\sqrt{x}}{x-25}-\dfrac{5}{\sqrt{x}+5}\left(x\ge0;x\ne25\right)\)
Để \(A=\dfrac{2\sqrt{x}}{3}\) thì:
\(\dfrac{\sqrt{x}-5}{\sqrt{x}+5}=\dfrac{2\sqrt{x}}{3}\)
\(\Leftrightarrow3\sqrt{x}-15=2x+10\sqrt{x}\)
\(\Leftrightarrow2x+10\sqrt{x}-3\sqrt{x}+15=0\)
\(\Leftrightarrow2x+7\sqrt{x}+15=0\)
Mà \(2x+7\sqrt{x}+15>0\) (vì \(x\ge0\))
nên không tìm được giá trị nào của \(x\) thoả mãn \(A=\dfrac{2\sqrt{x}}{3}\)
#\(Toru\)
Cho ΔABC cân tại A,I là giao điểm của hai đường phân giác trong.Biết IB=3;IA=\(3\sqrt{6}\).Độ dài cạnh AB là
A.\(5\sqrt{3}\) B.\(\dfrac{3\sqrt{17}}{2}\) C.\(3\sqrt{19}\) D.3\(\sqrt{10}\)
Cho hình vuông ABCD có M, N lần lượt là trung điểm của BC,CD ; H là giao điểm của AM và BN . Xác định tọa độ các đỉnh của hình vuông biết AB: x-y+4=0 . d(H,AB) = \(\dfrac{8\sqrt{2}}{5}\) , điểm N thuộc đường thẳng d: x-2y-6=0 và N có hoành độ dương
Để giải bài toán này, ta cần sử dụng các kiến thức về hình học phẳng và đường thẳng.
Trước tiên, ta xác định tọa độ của điểm A. Vì AB là đường chéo của hình vuông nên ta có thể sử dụng định lí Pythagoras trong tam giác vuông ABD để tính độ dài cạnh của hình vuông, rồi suy ra tọa độ của điểm A.
Với AB: x-y+4=0, ta có hai điểm A thỏa mãn điều kiện này: A(x,y)=(y-4,y) và A'(x',y')=(x'+4,x'). Vì độ dài cạnh của hình vuông là xác định nên ta chỉ cần tìm được một điểm trên cạnh AB, chẳng hạn A, để suy ra tọa độ của các điểm còn lại.
Giả sử ta chọn A(y-4,y), ta có
Tọa độ của B là (y, y-4) (vì AB là đường chéo)Tọa độ của C là (y-4, -y) (vì ABCD là hình vuông)Tọa độ của D là (-y, y-4) (vì ABCD là hình vuông)Ta dễ dàng tính được tọa độ của M và N:
Tọa độ của M là ((y+y-4)/2, (y-4)/2) = (y-2, -2)Tọa độ của N là (x, 2x+6) với điểm N thuộc đường thẳng d: x-2y-6=0 và N có hoành độ dương. Thay x-2y-6=0 vào ta có x=2y+6, suy ra tọa độ của N là (2y+6, 2x+6) = (2y+6, 4y+18)Tiếp theo, ta tính khoảng cách d giữa đường thẳng AB và điểm H. Theo công thức, ta có d(H, AB) = |Ax + By + C| / sqrt(A^2 + B^2), với (A, B, C) là vector pháp tuyến của đường thẳng AB.
Vì AB: x-y+4=0 nên vector pháp tuyến của AB là (1, -1). Điểm H là giao điểm của hai đường thẳng AM và BN nên ta dễ dàng tính được tọa độ của H là ((y-2)/2, (y-4)/2). Thay vào công thức tính khoảng cách ta có d(H, AB) = |y-2 + 2y-4 + 4| / sqrt(1+1) = 8sqrt(2)/2 = 4sqrt(2).
Vậy, tọa độ các đỉnh của hình vuông là:
A(y-4, y)B(y, y-4)C(y-4, -y)D(-y, y-4)Và tọa độ của M và N là:
M(y-2, -2)N(2y+6, 4y+18) với y > 0Khoảng cách giữa đường thẳng AB và điểm H là 4sqrt(2).
Cho hình thang ABCD có ∠B= ∠C=90 độ. Các đường chéo vuông góc với nhau tại Q.
a) C/m \(\dfrac{1}{AB^2}-\dfrac{1}{CD^2}=\dfrac{1}{QC^2}-\dfrac{1}{QB^2}\)
b) Các đường trung tuyến QE và BF của Δ BQC vuông góc với nhau tại G, biết BQ= \(\sqrt{6}\) cm. Tính BC.
Cho các biểu thức A=\(\dfrac{\sqrt{x}}{1+\sqrt{x}}\) và B=\(\dfrac{\sqrt{x}-1}{\sqrt{x}-2}+\dfrac{\sqrt{x}+2}{3-\sqrt{x}}-\dfrac{10-5\sqrt{x}}{x-5\sqrt{x}+6}\)(X≥0,X≠9,x≠4)
a.tính giá trị biểu thứC a khi x=3-2\(\sqrt{2}\)
b.rút gọn biểu thứ B
c.tìm giá trị nhỏ nhất của biểu thứ P=A:B
\(a.x=3-2\sqrt{2}\\ \Rightarrow\sqrt{x}=\sqrt{3-2\sqrt{2}}\\ =\sqrt{2-2\sqrt{2}+1}\\ =\sqrt{\left(\sqrt{2}-1\right)^2}\\ =\left|\sqrt{2}-1\right|\\ =\sqrt{2}-1\left(vì\sqrt{2}>1\right)\)
Thay \(\sqrt{x}=\sqrt{2}-1\) vào A ta được
\(A=\dfrac{\sqrt{2}-1}{1+\sqrt{2}-1}=\dfrac{\sqrt{2}-1}{\sqrt{2}}=\dfrac{\sqrt{2}-2}{2}\)
\(b.B=\dfrac{\sqrt{x}-1}{\sqrt{x}-2}+\dfrac{\sqrt{x}+2}{3-\sqrt{x}}-\dfrac{10-5\sqrt{x}}{x-5\sqrt{x}+6}\\ B=\dfrac{\sqrt{x}-1}{\sqrt{x}-2}-\dfrac{\sqrt{x}+2}{\sqrt{x}-3}-\dfrac{10-5\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\\ B=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\dfrac{10-5\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\\ B=\dfrac{x-3\sqrt{x}-\sqrt{x}+3-x+4-10+5\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\\ B=\dfrac{\sqrt{x}-3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\\ B=\dfrac{1}{\sqrt{x}-2}\)
\(c,P=A:B\\ P=\dfrac{\sqrt{x}}{1+\sqrt{x}}:\dfrac{1}{\sqrt{x}-2}\\ P=\dfrac{x-2\sqrt{x}}{1+\sqrt{x}}\)
\(P=\dfrac{-\sqrt{x}\left(-\sqrt{x}+2\right)}{\sqrt{x}+1}\)
Có: \(\sqrt{x}\ge0\)
\(\Rightarrow\sqrt{x}+1\ge1\left(I\right)\)
Lại có: \(\sqrt{x}\ge0\)
\(\Rightarrow-\sqrt{x}\le0\\ \Rightarrow-\sqrt{x}+2\le2\)
mà \(-\sqrt{x}\le0\)
\(\Rightarrow-\sqrt{x}\left(-\sqrt{x}+2\right)\ge2\)
Kết hợp với \(\left(I\right)\) \(\Rightarrow\) \(P=\dfrac{-\sqrt{x}\left(-\sqrt{x}+2\right)}{\sqrt{x}+1}\ge2\)
Vậy gtnn của P = \(2\) khi \(x=10+4\sqrt{6}\)
a: Khi \(x=3-2\sqrt{2}=\left(\sqrt{2}-1\right)^2\) thì
\(A=\dfrac{\sqrt{\left(\sqrt{2}-1\right)^2}}{1+\sqrt{\left(\sqrt{2}-1\right)^2}}=\dfrac{\sqrt{2}-1}{1+\sqrt{2}-1}=\dfrac{\sqrt{2}-1}{\sqrt{2}}=\dfrac{2-\sqrt{2}}{2}\)
b: \(B=\dfrac{\sqrt{x}-1}{\sqrt{x}-2}+\dfrac{\sqrt{x}+2}{3-\sqrt{x}}-\dfrac{10-5\sqrt{x}}{x-5\sqrt{x}+6}\)
\(=\dfrac{\sqrt{x}-1}{\sqrt{x}-2}-\dfrac{\sqrt{x}+2}{\sqrt{x}-3}+\dfrac{5\sqrt{x}-10}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)-\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)+5\sqrt{x}-10}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{x-4\sqrt{x}+3-x+4+5\sqrt{x}-10}{\left(\sqrt{x}-2\right)\cdot\left(\sqrt{x}-3\right)}\)
\(=\dfrac{\sqrt{x}-3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\dfrac{1}{\sqrt{x}-2}\)
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a,tâm O, SA=a và vuông góc với đáy. Gọi I, M là trung điểm của SC,AB,khoảng cách từ I đến CM là:
A. \(\dfrac{a\sqrt{30}}{10}\) B. \(\dfrac{2a\sqrt{5}}{5}\) C. \(\dfrac{a\sqrt{10}}{10}\) D. \(\dfrac{a\sqrt{3}}{2}\)
Lời giải:
Kẻ $AT$ vuông góc $MC$ \((T\in MC)\)
\(MC=\sqrt{MB^2+BC^2}=\sqrt{(\frac{a}{2})^2+a^2}=\frac{\sqrt{5}a}{2}\)
Khi đó:
\(\frac{AT}{AM}=\sin \angle AMT=\sin \angle BMC=\frac{BC}{MC}=\frac{a}{\frac{\sqrt{5}a}{2}}=\frac{2\sqrt{5}}{5}\)
\(\Leftrightarrow AT=\frac{2\sqrt{5}}{5}.AM=\frac{\sqrt{5}a}{5}\)
Xét tam giác vuông tại $A$ là $SAT$ :
\(ST=\sqrt{SA^2+AT^2}=\sqrt{a^2+\frac{a^2}{5}}=\frac{\sqrt{30}a}{5}\)
Ta thấy:
\(\left\{\begin{matrix} AT\perp MC\\ SA\perp MC\end{matrix}\right.\Rightarrow ST\perp MC\)
\(\Rightarrow d(S, MC)=ST=\frac{\sqrt{30}a}{5}\)
Vì $I$ là trung điểm của $SC$ nên:
\(d(I,MC)=\frac{1}{2}d(S,MC)=\frac{\sqrt{30}a}{10}\)
Đáp án A.
Bài 1: Cho biểu thức A = 1 - \(\dfrac{\sqrt{x}}{1+\sqrt{x}}\), B = \(\dfrac{\sqrt{x}-1}{\sqrt{x}-2}\)+ \(\dfrac{\sqrt{x}+2}{3-\sqrt{x}}\)- \(\dfrac{10-5\sqrt{x}}{x-5\sqrt{x}+6}\)
(với x ≥ 0, x ≠ 4, x ≠ 9)
a, Tính giá trị của A biết x = 6-2\(\sqrt{5}\)
b, Rút gọn P = A : B
c, Tìm giá trị nhỏ nhất của P
a: Thay \(x=6-2\sqrt{5}\) vào A, ta được:
\(A=1-\dfrac{\sqrt{5}-1}{\sqrt{5}-1+1}=1-\dfrac{\sqrt{5}-1}{\sqrt{5}}=\dfrac{\sqrt{5}}{5}\)
b: Ta có: P=A:B
\(=\left(1-\dfrac{\sqrt{x}}{\sqrt{x}+1}\right):\left(\dfrac{\sqrt{x}-1}{\sqrt{x}-2}-\dfrac{\sqrt{x}+2}{\sqrt{x}-3}+\dfrac{5\sqrt{x}-10}{x-5\sqrt{x}+6}\right)\)
\(=\dfrac{1}{\sqrt{x}+1}:\dfrac{x-4\sqrt{x}+3-x+4+5\sqrt{x}-10}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{1}{\sqrt{x}+1}:\dfrac{1}{\sqrt{x}-2}\)
\(=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\)