- Cho tam giác ABC vuông tại A, có M là trung điểm của BC, trên tia đối của MA lấy N sao cho MA=MN. Chứng minh rằng:
a) Tam giác ABM=Tam giác NCM
b) CN // AB
c) AM= 1/2 BC
Giúp mình với, nhớ vẽ hình nữa
Cho tam giác ABC vuông tại A.Trên cạnh BC lấy M là trung điểm BC.Trên tia
đối tia MA lấy N sao cho MN= MA. CMR:
a. Tam giác ABM = Tam giác NCM
b. Chứng minh: NC vuông góc với AC.
c. Trên cạnh AB lấy K. Trên cạnh NC lấy H sao cho BK=HC.
Chứng minh: K,M,H thẳng hàng
Cần gấp ( Kèm hình)
a: Xét ΔABM và ΔNCM có
MA=MN
\(\widehat{AMB}=\widehat{NMC}\)
MB=MC
Do đó: ΔABM=ΔNCM
Cho tam giác ABC có AB=AC, gọi M là trung điểm của BC. Nối A với M. Chứng minh rằng :
a) Tam giác AMB = Tam giác AMC
b) AM là tia phân giác của BAC
c) AM vuông góc BC ; ACM=ABM
d) Trên tia đối cỉa tia MA lấy điểm N sao cho : MN=MA . CMR: CN // AB
a) Xét tam giác AMB và tam giác AMC ta có:
AM chung
AB=AC (gt)
MB=MC (vì M là trung điểm của BC)
Suy ra tam giác AMB=tam giác AMC (c-c-c) (đpcm)
b) Vì tam giác AMB=tam giác AMC (cmt)
Suy ra góc BAM=góc CAM (2 góc tương ứng)
Suy ra AM là tia phân giác của góc BAC (đpcm)
c) Vì tam giác AMB=tam giác AMC (cmt)
Suy ra góc AMB=góc AMC(2 góc tương ứng)
Mà góc AMB+góc AMC=180 độ (2 góc kề bù)
Suy ra góc AMB=góc AMC=180 độ/2=90 độ
Suy ra AM vuông góc với BC tại M (đpcm)
Vì tam giác AMB=tam giác AMC (cmt)
Suy ra góc ACM=góc ABM (2 góc tương ứng) (đpcm)
Bài 5 :(3,5 điểm) Cho tam giác ABC có AB = AC, M là trung điểm của BC. Trên tia đối
của tia MA lấy điểm E sao cho ME = MA. Chứng minh rằng:
a) tam giác ABM = tam giác ACM; b) AB //CE; c) AM vuông góc BC
a: Xét ΔABM và ΔACM có
AB=AC
AM chung
BM=CM
Do đó: ΔABM=ΔACM
Bài 5 :(3,5 điểm) Cho tam giác ABC có AB = AC, M là trung điểm của BC. Trên tia đối
của tia MA lấy điểm E sao cho ME = MA. Chứng minh rằng:
a) tam giác ABM = tam giác ACM; b) AB //CE; c) AM vuông góc BC
\(a,\left\{{}\begin{matrix}MB=MC\\AB=AC\\AM\text{ chung}\end{matrix}\right.\Rightarrow\Delta ABM=\Delta ACM\left(c.c.c\right)\\ b,\left\{{}\begin{matrix}AM=ME\\BM=MB\\\widehat{AMB}=\widehat{EMC}\left(đđ\right)\end{matrix}\right.\Rightarrow\Delta AMB=\Delta EMC\left(c.g.c\right)\\ \Rightarrow\widehat{ABC}=\widehat{BME}\\ \text{Mà 2 góc này ở vị trí slt nên }AB\text{//}EC\\ c,\Delta AMB=\Delta AMC\\ \Rightarrow\widehat{AMB}=\widehat{AMC}\widehat{AMC}\\ \text{Mà }\widehat{AMC}+\widehat{AMB}=180^0\\ \Rightarrow\widehat{AMC}=\widehat{AMB}=90^0\\ \Rightarrow AM\bot BC\)
cho tam giác ABC vuông tại A có góc B bằng 60 độ. Gọi M là trung điểm của BC, trên tia đối của tia MA lấy điểm D sao cho DM=MA
a)Tính góc ACB
b)Chứng minh: Tam giác ABM=tam giác DCM và AB//CD
c)Chứng minh: AM=1/2 BC
Cho tam giác ABC vuông tại B, M trên tia đối của t là trung điểm của BC trên tia AM lấy E sao cho ME = MA chứng minh rằng
a. Tam giác ABM = tam giác ECM
b.BC vuông góc với CE
Lời giải:
a. Xét tam giác $ABM$ và $ECM$ có:
$AM=EM$ (gt0
$BM=CM$ (do $M$ là trung điểm $BC$)
$\widehat{AMB}=\widehat{EMC}$ (đối đỉnh)
$\Rightarrow \triangle ABM=\triangle ECM$ (c.g.c)
b.
Từ tam giác bằng nhau phần a suy ra $\widehat{ECM}=\widehat{ABM}=90^0$
$\Rightarrow EC\perp MC$ hay $EC\perp BC$ (đpcm)
Bài 1. Cho tam giác ABC có AB = AC. M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho AM = MD. a) Chứng minh tam giác ABM = tam giác DCM. b) Chứng minh AB = DC. c) Chứng minh AM = BC. Vẽ hình luôn nha các bạn
b: Xét tứ giác ABDC có
M là trung điểm của AD
M là trung điểm của BC
Do đó: ABDC là hình bình hành
Suy ra: AB=DC
Cho tam giác ABC vuông tại A có M là trung điểm của BC. Trên tia đối của tia MA lấy điểm N sao cho MN=MA. a) Chứng minh: AB = NC , tam giác CAN vuông b) Chứng minh: AM = 1/2 BC c) Kẻ MK vuông góc với BN , MI vuông góc với AC . CM I, M , K Thẳng hàng
a: Xét tứ giác ABNC có
M là trung điểm của BC
M là trung điểm của AN
Do đó: ABNC là hình bình hành
mà \(\widehat{CAB}=90^0\)
nên ABNC là hình chữ nhật
Suy ra: AB=NC và ΔCAN vuông tại C
b: Ta có: ΔABC vuông tại A
mà AM là đường trung tuyến
nên AM=1/2BC
a) Xét tam giác MAB và tam giác MCN có
MB =MC ( M là tđ BC)
AM =AN (gt)
AMB = CMD ( 2 góc đối đỉnh )
=> 2 tam giác = nhau (c-g-c)
=> AB =NC (2 cạnh tương ứng)
=> góc BAN = góc ANC (2 góc tương ứng)
mà 2 góc ở vị trí so le trong => AB // NC
=> A + C = 180 ( 2 góc trong cùng phía bù nhau)
=> 90 + c = 180 => góc C=90
xét tam giác ACN có góc C =90 => tma giác ACN vuông tại C
b) Xét tam giác ABC vuông tại A có M là trung điểm BC => AM là trung tuyến => AM = BM = CM =1/2 BC(tc)
c) ta xét tam giác BAN có : AM =MN => M là trung điểm của AN => BM là trung tuyến của AN
mà BM = AM (cmt ) => BM=AM=MN=1/2AN
=> tam giác ABN vuông tại B => AB vuông góc với BN
mà MK vuông góc với BN (gt)=> AB // MK ( từ vuông góc -> //)
mà AB vuông góc AC => MK vuông góc với AC (từ vuông góc -> //)
ta lại có MI cũng vuông góc với AC (gt)
=> M,K,I thẳng hàng (tiên đề ơ clits)
Cho tam giác ABC vuông tại A. Lấy M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD=MA
a) Chứng minh tam giác ABM= tam giác CDA
b) AN=1/2BC
a)
Sửa đề: ΔABM=ΔDCM
Xét ΔABM và ΔDCM có
MB=MC(M là trung điểm của BC)
\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)
MA=MD(gt)
Do đó: ΔABM=ΔDCM(C-g-c)