Cho đa thức A= x2 - 4xy + 4y2 +1
a) Chứng tỏ A>0 với mọi x, y
b) Biết x - 2y=4.Tìm giá trị của A
4. Tìm giá trị lớn nhất của các biểu thức a. A = 5 – 8x – x2 b. B = 5 – x2 + 2x – 4y2 – 4y 5. a. Cho a2 + b2 + c2 = ab + bc + ca chứng minh rằng a = b = c b. Tìm a, b, c biết a2 – 2a + b2 + 4b + 4c2 – 4c + 6 = 0 6. Chứng minh rằng: a. x2 + xy + y2 + 1 > 0 với mọi x, y b. x2 + 4y2 + z2 – 2x – 6z + 8y + 15 > 0 Với mọi x, y, z 7. Chứng minh rằng: x2 + 5y2 + 2x – 4xy – 10y + 14 > 0 với mọi x, y.
Cho đa thức
A = 5x2y- 3xy+ x4y2- 5x2y+ 2xy+ x2+ xy+ 1
a, Thu gọn rồi tính giá trị của đa thức A tại x= -1; y= 1
b, Chứng tỏ rằng đa thức A luôn nhận giá trị dương với mọi giá trị của x, y
a: A=5x^2y-5x^2y-3xy+2xy+xy+x^4y^2+1+x^2
=x^4y^2+x^2+1
Khi x=-1 và y=1 thì A=(-1)^4*1^2+(-1)^2+1=3
b: A=x^2(x^2y^2+1)+1>=1>0 với mọi x,y
=>A luôn dương với mọi x,y
Cho đa thức A=x2 - 4xy + 4y2 +1
a) Chứng tỏ A>0 với mọi x, y
b) Biết x-2y =4.Tìm giá trị của A
a) A=\(x^2-4xy+4y^2+1=\left(x^2-4xy+4y^2\right)+1=\left(x^2-2x2y+\left(2y\right)^2\right)+1=\left(x-2y\right)^2+1\)
Do \(\left(x-2y\right)^2\)>=0
=>\(\left(x-2y\right)^2\)+1>=1
=>\(\left(x-2y\right)^2\)+1>0
=>\(x^2-4xy+4y^2+1\)>0
Vậy A>0 với mọi x,y
b) Ta có A=\(x^2-4xy+4y^2+1=\left(x-2y\right)^2+1\)
Thay x-2y=4 vào biểu thức (x-2y)\(^2\) ta có:
4\(^2\)+1=16+1=17
Vậy giá trị của A tại x-2y=4 là 17
a.
\(A=x^2-4xy+4y^2+1\\ =\left(x^2-2.x.2y+\left(2y\right)^2\right)+1\\ =\left(x-2y\right)^2+1\ge1>0\)
b.
\(x-2y=4\\ \Rightarrow A=\left(x-2y\right)^2+1=16+1=17\)
a) Cho x - y = 7 .Tính giá trị biểu thức A = x( x + 2 ) + y ( y - 2 ) - 2xy
B = x3 - 3xy( x - y ) - y3 - x2 + 2xy - y2
b) Cho x + 2y = 5.Tính giá trị biểu thức:
C = x2 + 4y2 - 2x + 10 + 4xy - 4y
Mọi người ghi rõ cách làm giùm mình với,cảm ơn đã giúp mình nha!
Cho đa thức A = x2+ 4xy + 4y2 và đa thức
B = 4y (x +y) -2x -3
- Rút gọn biểu thức P = A – B
- Tinh giá trị nhỏ nhất của biểu thức P
\(P=x^2+4xy+4y^2-4xy-4y^2+2x+3\)
\(=x^2+2x+3\)
Tính giá trị biểu thức N = (x 2 − 4y 2 )(x − 2y) x 2 − 4xy + 4y 2 tại x = -9998 và y = -1.
A. N = -9996
B. N = 10000
C. N = -10000
D. N = -19997
Tính giá trị của biểu thức: B = x2-4xy+4y2, biết:
a) x=2, y=1/2
b) x=1,lyl 2,5
c) 2x=3y và x+2y=-7
d) x-2y=0
a) Thay \(x=2,y=\frac{1}{2}\), ta được \(B=2^2-4.2.\frac{1}{2}+4.\left(\frac{1}{2}\right)^2=4-4+1=1\)
b) Thay \(x=1,\left|y\right|=2.5\Leftrightarrow x=1,y=2,5\), ta được \(B=1^2-4.1.2,5+4.\left(2,5\right)^2=1-10+25=16\)
c) Thay \(2x=3y,x+2y=-7\Leftrightarrow\left\{{}\begin{matrix}2x-3y=0\\x+2y=-7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=-2\end{matrix}\right.\), ta được \(B=\left(-3\right)^2-4\left(-3\right)\left(-2\right)+4\left(-2\right)^2=9-24+16=1\)
d) Thay $x=2y$, ta được \(B=\left(2y\right)^2-4\left(2y\right)y+4y^2=4y^2-8y^2+4y^2=0\)
B=x2-4xy+4.y2.
B=(x2-2xy)+4y2-2xy.
B=x(x-2y)+2y(2y-x)
B=x(x-2y)-2y(2y-x)=(x-2y)2.
a)Thay x=2;y=1/2, ta được:
B=(2-1)2=1
b)TH1:y=2,5
B=(x-2y)2=(1-2.2,5)2=(-4)2=16.
TH2:y=-2,5
B=(x-2y)2=(1+2,5.2)2=62=36
Vậy B=16 hoặc 36.
c)x=\(\frac{3}{2}\)y ⇒y(\(\frac{3}{2}\)+2)=-7
y.\(\frac{7}{2}\)=-7⇒y=-2
x=(-2).\(\frac{3}{2}\)=-3
B=[-3-2.(-2)]2=12=1
d)B=(x-2y)2=02=0.
Cho M =3x^2y+4x^2y+\(\frac{1}{2}\)+x^2y
1)tìm cặp số nguyên (x;y) để M=240
2)chứng minh M và 2x^2y^3 cung dấu với mọi x;y khác 0
3) C/M M và -2x^4 khác dấu với mọi x khác 0
4) C/M 2x^4y^3 và -4xy ít nhất có một đơn thức có giá trị âm với mọi x,y khác 0
5)C/M M-2x^4y^3 và -4xy ít nhất có 1 đơn thức có giá trị dương với mọi x,y khác 0
6)tìm số h để kx^2y^2 và 2My nhận giá trị
a) âm với mọi x,y khác 0
b) dương vói mọi x,y khác 0
7) tìm giá trị nhỏ nhất của M+2
8) tìm giá trị lớn nhất của -M+2
9)tìm số tự nhiên A biêt \(\frac{15}{6}x^2y+\frac{15}{12}x^2y+\frac{15}{30}x^2y+.......+\frac{15}{a-\left(a+1\right)}\)
Tính giá trị của biểu thức sau: a) P = (x2 + 4xy + 4y2 ) – 2(x + 2y)(y – 1) + (y2 – 2y + 1) với x + y = 10 b) Q = (x + y)2 + 4(x – y)2 = 4(x – y)(x + y) với x = 3y
c) M = x3 + y 3 + 3xy với x + y = 1
d) N = x 3 + y 3 với x + y = 2 và x 2 + y2 = 10
\(P=\left(x+2y\right)^2-2\left(x+2y\right)\left(y-1\right)+\left(y-1\right)^2\\ P=\left(x+2y-y+1\right)^2=\left(x+y+1\right)^2\\ Q.sai.đề\\ M=\left(x+y\right)^3-3xy\left(x+y\right)+3xy\\ M=1^3-3xy\left(x+y-1\right)=1-3xy\left(1-1\right)=1-0=1\\ x+y=2\Leftrightarrow\left(x+y\right)^2=4\\ \Leftrightarrow x^2+y^2+2xy=4\\ \Leftrightarrow2xy=4-10=-6\\ \Leftrightarrow xy=-3\\ N=x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\\ N=2\left(10+3\right)=2\cdot13=26\)