chứng minh rằng nếu a lẻ,a không chia hết cho 3 thì a^2-1 chia hết cho 6
chứng minh rằng nếu a là một số lẻ không chia hết cho 3 thì a^2 - 1 thì chia hết cho 6
a^2-1= (a+1)(a-1)
nếu a là 1 số lẻ không chia hết cho thì ( a-1)(a+1) là 1 số chẵn chia hết cho 2 và 3
mà 2 và 3 nguyên tố cùng nhau nên (a-1)(a+1) chia hết cho 6
Bạn trên làm sai rồi!
Mình làm(Đã được thầy chữa 100%)
Ta có a là 1 số lẻ => a không chia hết cho 2
Mà a không chia hết cho 3( theo đề bài) nên a ko chia hết cho 6(Vì ƯCLN(2,3) = 1)
=> a sẽ có dạng 6k+1 hoặc 6k + 5
Khi a = 6k+1, ta có:
a2-1 = (6k+1)2 - 1
= (6k+1).(6k+1)-1
= (6k+1).6k + (6k+1).1 -1
= 36k2 + 6k + 6k + 1 -1
= 36k2 + 6k + 6k = 36k2 + 12k
= 6(6k2 + 2k)
=> a2-1 chia hết cho 6
Khi a = 6k+5, ta có:
a2- 1 = (6k + 5)2- 1
= (6k + 5).(6k+5)-1
= (6k + 5).6k + (6k + 5).5 - 1
= 36k2 + 30k + 30k + 24
= 6(6k2 + 5k + 5k + 4)
=> a2-1 chia hết cho 6
@Trịnh Đức Anh
Chứng minh rằng: nếu a là 1 số lẻ không chia hết cho 3 thì a^2 - 1 chia hết cho 6
hay cái con khí nhà ông đó Nguyễn Hoàng Nam
Uy tín, chất lượng cao!
Ta có a là 1 số lẻ => a không chia hết cho 2
Mà a không chia hết cho 3( theo đề bài) nên a ko chia hết cho 6(Vì ƯCLN(2,3) = 1)
=> a sẽ có dạng 6k+1 hoặc 6k + 5
Khi a = 6k+1, ta có:
a2-1 = (6k+1)2 - 1
= (6k+1).(6k+1)-1
= (6k+1).6k + (6k+1).1 -1
= 36k2 + 6k + 6k + 1 -1
= 36k2 + 6k + 6k = 36k2 + 12k
= 6(6k2 + 2k)
=> a2-1 chia hết cho 6
Khi a = 6k+5, ta có:
a2- 1 = (6k + 5)2- 1
= (6k + 5).(6k+5)-1
= (6k + 5).6k + (6k + 5).5 - 1
= 36k2 + 30k + 30k + 24
= 6(6k2 + 5k + 5k + 4)
=> a2-1 chia hết cho 6
@Trịnh Đức Anh
Học tập tốt
Chứng minh rằng : Nếu a là một số lẻ không chia hết cho 3 thì a mũ 2 - 1 chia hết cho 6
- a là số lẻ => a2 là số lẻ
Mà 1 lẻ
=> a2 - 1 chẵn
=> a2 - 1 chia hết cho 2 (1)
- Có a là số lẻ không chia hết cho 3
=> a chia 3 dư 1 hoặc 2
=> a2 chia 3 dư 1
=> a2 - 1 chia hết cho 3 (2)
Từ (1) và (2)
=> a2 - 1 chia hết cho 6 (Đpcm)
Do a lẻ =>a2 lẻ=> a2-1 là chẵn =>a2-1 chia hết cho 2 (1)
Do a ko chia hết cho 3 => a2 ko chia hết cho 3 =>a2 chia 3 dư 1=> a2-1 chia hết cho 3 (2)
Từ (1) và (2),(1;2)=1 =>a2-1 chia hết cho 6
Ta có:
a là số lẻ
⇒⇒ a2 là số lẻ
⇒⇒ a2 - 1 là số chẵn
⇒⇒ a2 - 1 ⋮⋮ 2
Mà a không chia hết cho 3
⇒⇒ a2 chia 3 dư 1
⇒⇒ a2 - 1 ⋮⋮ 3
⇒⇒ a2 - 1 ⋮⋮ 2;3
⇒⇒ a2 - 1 ⋮⋮ 6
Vậy nếu a là một số lẻ không chia hết cho 3 thì a2 - 1 chia hết cho 6 ( ĐPCM )
Chứng minh rằng : Nếu o là một số lẻ không chia hết cho 3 thì a mũ 2 - 1 chia hết cho 6
Vì a là một số lẻ nên a2 cũng là một số lẻ
hay \(a^2-1⋮2\)(Vì 1 cũng là số lẻ)(1)
Ta có: a là số lẻ không chia hết cho 3
nên a chia 3 dư 1 hoặc dư 2
\(\Rightarrow a^2\) chia 3 dư 1
hay \(a^2-1⋮3\)(2)
mà (2;3)=1(3)
nên Từ (1), (2) và (3) suy ra \(a^2-1⋮6\)(đpcm)
Mình làm(Đã được thầy chữa 100%)
Ta có a là 1 số lẻ => a không chia hết cho 2
Mà a không chia hết cho 3( theo đề bài) nên a ko chia hết cho 6(Vì ƯCLN(2,3) = 1)
=> a sẽ có dạng 6k+1 hoặc 6k + 5
Khi a = 6k+1, ta có:
a2-1 = (6k+1)2 - 1
= (6k+1).(6k+1)-1
= (6k+1).6k + (6k+1).1 -1
= 36k2 + 6k + 6k + 1 -1
= 36k2 + 6k + 6k = 36k2 + 12k
= 6(6k2 + 2k)
=> a2-1 chia hết cho 6
Khi a = 6k+5, ta có:
a2- 1 = (6k + 5)2- 1
= (6k + 5).(6k+5)-1
= (6k + 5).6k + (6k + 5).5 - 1
= 36k2 + 30k + 30k + 24
= 6(6k2 + 5k + 5k + 4)
=> a2-1 chia hết cho 6
@Trịnh Đức Anh
@@@@@@@@@@@@@@@@@Học tập tốt@@@@@@@@@@@@@@@@@@@@
Chứng minh rằng nếu a là một số lẻ không chia hết cho 3 thì a2-1 chia hết cho 6
VD: a = 7
7 Ko chia hết cho 3
7^2 - 1 = 48
48 : 6 = 8
= > khẳng định trên đúng
Ta có:
a là số lẻ
⇒⇒ a2 là số lẻ
⇒⇒ a2 - 1 là số chẵn
⇒⇒ a2 - 1 ⋮⋮ 2
Mà a không chia hết cho 3
⇒⇒ a2 chia 3 dư 1
⇒⇒ a2 - 1 ⋮⋮ 3
⇒⇒ a2 - 1 ⋮⋮ 2;3
⇒⇒ a2 - 1 ⋮⋮ 6
Vậy nếu a là một số lẻ không chia hết cho 3 thì a2 - 1 chia hết cho 6 ( ĐPCM )
Chứng minh rằng nếu a là một số lẻ không chia hết chia 3 thì a 2 - 1 chia hết cho 6
Ta có a là 1 số lẻ => a không chia hết cho 2
Mà a không chia hết cho 3( theo đề bài) nên a ko chia hết cho 6(Vì ƯCLN(2,3) = 1)
=> a sẽ có dạng 6k+1 hoặc 6k + 5
Khi a = 6k+1, ta có:
a2-1 = (6k+1)2 - 1
= (6k+1).(6k+1)-1
= (6k+1).6k + (6k+1).1 -1
= 36k2 + 6k + 6k + 1 -1
= 36k2 + 6k + 6k = 36k2 + 12k
= 6(6k2 + 2k)
=> a2-1 chia hết cho 6
Khi a = 6k+5, ta có:
a2- 1 = (6k + 5)2- 1
= (6k + 5).(6k+5)-1
= (6k + 5).6k + (6k + 5).5 - 1
= 36k2 + 30k + 30k + 24
= 6(6k2 + 5k + 5k + 4)
=> a2-1 chia hết cho 6
Chứng minh rằng nếu a là một số lẻ không chia hết chia 3 thì a2 - 1 chia hết cho 6
Ta có a là 1 số lẻ => a không chia hết cho 2
Mà a không chia hết cho 3( theo đề bài) nên a ko chia hết cho 6(Vì ƯCLN(2,3) = 1)
=> a sẽ có dạng 6k+1 hoặc 6k + 5
Khi a = 6k+1, ta có:
a2-1 = (6k+1)2 - 1
= (6k+1).(6k+1)-1
= (6k+1).6k + (6k+1).1 -1
= 36k2 + 6k + 6k + 1 -1
= 36k2 + 6k + 6k = 36k2 + 12k
= 6(6k2 + 2k)
=> a2-1 chia hết cho 6
Khi a = 6k+5, ta có:
a2- 1 = (6k + 5)2- 1
= (6k + 5).(6k+5)-1
= (6k + 5).6k + (6k + 5).5 - 1
= 36k2 + 30k + 30k + 24
= 6(6k2 + 5k + 5k + 4)
=> a2-1 chia hết cho 6
chứng minh rằng nếu a là một số lẻ không chia hết cho 3 thì a2- 1 chia hết cho 6
Ta có a là 1 số lẻ => a không chia hết cho 2
Mà a không chia hết cho 3( theo đề bài) nên a ko chia hết cho 6(Vì ƯCLN(2,3) = 1)
=> a sẽ có dạng 6k+1 hoặc 6k + 5
Khi a = 6k+1, ta có:
a2-1 = (6k+1)2 - 1
= (6k+1).(6k+1)-1
= (6k+1).6k + (6k+1).1 -1
= 36k2 + 6k + 6k + 1 -1
= 36k2 + 6k + 6k = 36k2 + 12k
= 6(6k2 + 2k)
=> a2-1 chia hết cho 6
Khi a = 6k+5, ta có:
a2- 1 = (6k + 5)2- 1
= (6k + 5).(6k+5)-1
= (6k + 5).6k + (6k + 5).5 - 1
= 36k2 + 30k + 30k + 24
= 6(6k2 + 5k + 5k + 4)
=> a2-1 chia hết cho 6
chứng minh rằng : nếu a là một số lẻ không chia hết cho 3 thì a^2-1chia hết cho 6
a là số lẻ
=> a2 là số lẻ
=> a2 - 1 là số chẵn
=> a2 - 1 chia hết cho 2
a không chia hết cho 3
a2 chia 3 dư 1
a2 - 1 chia hết cho 3
Vì (2;3) = 1
Vậy a2 - 1 chia hết cho 2.3 = 6 (đpcm)