+) Do a lẻ => a2 lẻ => a2 - 1 chẵn => a2 - 1 chia hết cho 2 (1)
+) Do a không chia hết cho 3 => a = 3k + 1 hoặc a = 3k + 2 (k thuộc N)
Nếu: a = 3k + 1 thì a2 = (3k + 1).(3k + 1)
= (3k + 1).3k + (3k + 1)
= 9k2 + 3k + 3k + 1 : 3 dư 1
Nếu: a = 3k + 2 thì a2 = (3k + 2).(3k + 2)
= (3k + 2).3k + (3k + 2)
= 9k2 + 6k + 6k + 4 : 3 dư 2
=> a2 chia 3 dư 1 => a2 - 1 chia hết cho 3 (2)
Từ (1) và (2), do: (2;3) = 1 => a2 - 1 chia hết cho 6.
=> ĐPCM
Ta có : a^2 - 1 = a^2 - a + a -1 = a x ( a - 1 ) + ( a - 1) = (a - 1) x (a +1 )
Vì a là số lẻ nên a +1 là số chẵn . Suy ra : (a - 1) x (a +1 ) chia hết cho 2 (1)
Mặt khác : a không chia hết cho 3 nên a có thể có dạng 3k+1 hoặc 3k+2
+ Nếu a = 3k+1
Suy ra : a - 1= 3k+1 - 1 = 3k chia hết cho 3
+ Nếu a = 3k+2
Suy ra : a + 1= 3k+2 + 1 = 3k + 3 chia hết cho 3
Suy ra : (a - 1) x (a +1 ) chia hết cho 3 (2)
Vì (a - 1) x (a +1 ) chia hết cho 2 và 3 . Mà 2 và 3 là hai số nguyên tố cùng nhau nên chúng chia hết cho 2.3=6
Vậy : (a - 1) x (a +1 ) chia hết cho 6 (đpcm)